- #1
Orion1
- 973
- 3
I am inquiring if anyone here is qualified to numerically calculate the following equation:
Fermi coupling constant and Muon decay lifetime: (ref. 1)
[tex]\frac{G_F}{(\hbar c)^3} = \sqrt{\frac{192 \pi^3 \hbar}{(m_{\mu} c^2)^5 \tau_{\mu}}[/tex]
Muon decay lifetime: (ref. 2)
[tex]\tau_{\mu} = 2.197034 \cdot 10^{- 6} \; \text{s}[/tex]
According to ref. 3, the Fermi coupling constant is:
[tex]\frac{G_F}{(\hbar c)^3} = 1.166391 \cdot 10^{- 5} \; \text{GeV}^{- 2}[/tex]
Muon decay width and lifetime: ?
[tex]\Gamma_{\mu} = \frac{1}{\tau_{\mu}}[/tex]
However, according to ref. 2, the muon decay width is:
[tex]\Gamma_{\mu} = \frac{G_F^2 m_\mu^5}{192\pi^3} I \left(\frac{m_e^2}{m_\mu^2}\right)[/tex]
[tex]I(x)=1-8x+12x^2ln\left(\frac{1}{x}\right)+8x^3-x^4[/tex]
Also, Wikipedia ref. 2 does not explain what the [tex]I(x)[/tex] function is, or what [tex]x[/tex] represents.
I presume that:
[tex]I(x) = I \left(\frac{m_e^2}{m_\mu^2}\right) \; \; \; x = \frac{m_e^2}{m_\mu^2}[/tex]
Muon decay width: (ref. 4)
[tex]\Gamma_{\mu} = 3 \cdot 10^{- 19} \; \text{GeV}[/tex]
key:
[tex]G_F[/tex] - Fermi coupling constant
[tex]m_{e}[/tex] - electron mass
[tex]m_{\mu}[/tex] - muon mass
Reference:
http://www.physics.union.edu/images/summer06/pochedley.pdf"
http://en.wikipedia.org/wiki/Muon"
http://en.wikipedia.org/wiki/Physical_constant"
http://books.google.com/books?id=-S...=M5VYRBiseTeT87rr7tjglfO6AAo&hl=en#PPA149,M1"
Last edited by a moderator: