- #1
jostpuur
- 2,116
- 19
[tex]
V(x) = \left\{\begin{array}{ll}
0, & \exists n\in\mathbb{Z},\; x\in [2nL, (2n+1)L]\\
\infty, &\exists n\in\mathbb{Z},\; x\in\; ](2n-1)L, 2nL[\\
\end{array}\right.
[/tex]
This is a periodic potential. L is some constant. Is a solution
[tex]
\psi(x) = \chi_{[0,L]}(x)\;\sin\big(\frac{\pi x}{L}\big)
[/tex]
of the Schrödinger's equation
[tex]
\Big(-\frac{\hbar^2}{2m}\partial_x^2 + V(x)\Big)\psi(x) = E\psi(x)
[/tex]
a counter example to the Bloch's theorem?
[tex]\chi_{[0,L]}[/tex] is a characteristic function, 1 when [tex]x\in [0,L][/tex] and 0 otherwise.
V(x) = \left\{\begin{array}{ll}
0, & \exists n\in\mathbb{Z},\; x\in [2nL, (2n+1)L]\\
\infty, &\exists n\in\mathbb{Z},\; x\in\; ](2n-1)L, 2nL[\\
\end{array}\right.
[/tex]
This is a periodic potential. L is some constant. Is a solution
[tex]
\psi(x) = \chi_{[0,L]}(x)\;\sin\big(\frac{\pi x}{L}\big)
[/tex]
of the Schrödinger's equation
[tex]
\Big(-\frac{\hbar^2}{2m}\partial_x^2 + V(x)\Big)\psi(x) = E\psi(x)
[/tex]
a counter example to the Bloch's theorem?
[tex]\chi_{[0,L]}[/tex] is a characteristic function, 1 when [tex]x\in [0,L][/tex] and 0 otherwise.