- #1
Cincinnatus
- 389
- 0
The following email was sent out via the computational neuroscience mailing list [Comp-neuro]. Since Comp-neuro is a public list I think it is fine to repost this here (I am not the author). Perhaps someone will find this useful...
-Cincinnatus
------------------------------------------------------------------------------------------
This is a collection of references obtained in response to a request for key papers from the computational neuroscience community. I have excluded self-citations (but many of those excluded papers actually appear in my own list of key papers below). I have removed the names of respondents, but have left their comments in, as these can be very useful.
Many thanks to all those who contributed to this wide-ranging collection.
Jim Stone, 18th July 2008.
--
JV Stone's key papers:
SB Laughlin. A simple coding procedure enhances a neuron's informationcapacity. Z Naturforsch, 36c:910{912, 1981.See other papers by Laughlin which cover similar material.
Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., and Pitts, W.H., What the Frog¼s Eye Tells the Frog's Brain, Proc. Inst. Radio Engr. 47:1940-1951, 1959.
Ballard, DH, Cortical connections and parallel processing: Structure and function, in Vision, in Brain and cooperative computation, pp 563-621, 1987, Arbib, MA and Hanson AR (Eds).
Y Weiss, EP Simoncelli, and EH Adelson. Motion illusions as optimal percepts. Nature Neuroscience, 5(6):598 604, 2002.
BA Olshausen and DJ Field. Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14:481 487, 2004.
T Poggio, V Torre, and C Koch. Computational vision and regularization theory. Nature, 317:314 319, 1985.
AA Stocker and EP Simoncelli. Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience, 9(4):578 585, 2006.
Marr, D., and T. Poggio. <http://cbcl.mit.edu/people/poggio/journals/marr-poggio-science-1976.pdf>Cooperative Computation of Stereo Disparity, Science, 194, 283-287, 1976.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-propagating errors. Nature, 323, 533--536.
Hinton, G. E. and Nowlan, S. J. How learning can guide evolution. Complex Systems, 1, 495--502.
Hinton, G. E. and Plaut, D. C. Using fast weights to deblur old memories. Proceedings of the Ninth Annual Conference of the Cognitive Science Society, Seattle, WA
Becker, S. and Hinton, G. E. A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature, 355:6356, 161-163
Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147-169.
@article{DURBIN_WILLSHAW_TSP, author ="Durbin, R and Willshaw, D", title = "An analogue approach to the traveling salesman problem using an elastic net method", journal = "Nature", volume = "326", number = "6114", pages = "689-691", month = "", year = "1987" }
@article{DOUGLAS_CANONICAL_89, author = "Douglas, RJ and Martin, KAC and Whitteridge, D", title = "A Canonical Microcircuit for Neocortex", journal = "Neural Computation", volume = "1", number = "", pages = "480-488", month = "", year = "1989" }
@article{SWINDALE82, author = "Swindale, NV", title = "A model for the formation of orientation columns", journal = "Proceedings Royal Society London B", volume = "215", number = "", pages = "211-230", month = "", year = "1982" }
Zohary, E, Shadlen, MN and Newsome, WT (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140-143.
Hopfield's papers (see below).
--
Hodgkin and Huxley 1952d (the modeling paper)
--
Song and Abbott: Cortical development and remapping through spike timing-dependent plasticity.Neuron 32:339-50, 2001
and
Buonomano and Merzevich: Temporal information transformed into a spatial code by a neural network with realistic properties.Science. 1995 Feb 17;267(5200):1028-30.
--
Wilson HR, Cowan JD.Excitatory and inhibitory interactions in localized populations of modelneurons. Biophys J. 1972 Jan;12(1):1-24.
H.B. Barlow, The mechanical mind.Ann. Rev. Neurosci. 13 15-24 (1990)It is about a simple model of consciousness.
--
From the cognitive side of computational neuroscience and I recommend:
Pouget A, Deneve S, Duhamel JR (2002) A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci. 3: 741-747.
Hamker, F.H., Zirnsak, M., Calow, D., Lappe, M. (2008)ÝThe peri-saccadic perception of objects and space.ÝPLOS Computational Biology 4(2):e21
Olshausen BA, Field DJ. 1996. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-9.
--
I was really influenced by
@article{Atick92, Author = {Atick, Joseph J.}, Journal = {Network: {C}omputation in {N}eural {S}ystems}, Number = {2}, Pages = {213--52}, Title = {Could {I}nformation {T}heory {P}rovide an {E}cological {T}heory of {S}ensory {P}rocessing?}, Volume = {3}, Year = {1992}}
which is a review paper rather related to the seminal papers from Barlow and Marr.
--
Wilson HR, Cowan JD.Excitatory and inhibitory interactions in localized populations of modelneurons.Biophys J. 1972 Jan;12(1):1-24.
--
Wiring Optimization Dmitri B. ChklovskiiTraub's CA1 model/Pinsky Rinzel 2 compartmental modelsErik De Schutter's Purkinje cell modelsHenry Markram's Cortical ModelsRolls & Treves - Hippocampal NetworkPolsky & Mel - 2layer pyramidal cell modelTerry Sejnowski - Synapse, modeldbUpinder S Bhalla - Million Synapses / Bistable systems
--
These papers introduced accurate models of calcium dynamics and neuromodulatory effects on ion channel activity.
Bhalla US, Iyengar R.Emergent properties of networks of biological signaling pathways.Science. 1999 Jan 15;283(5400):381-7.
Zador A, Koch C, Brown TH.Biophysical model of a Hebbian synapse.Proc Natl Acad Sci U S A. 1990 Sep;87(17):6718-22.
Holmes WR, Levy WB.AbstractInsights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes.J Neurophysiol. 1990 May;63(5):1148-68.
--
There are two theoretical papers which, in my opinion, have had a strong influence on the way we think about synaptic transmission and short term plasticity today:
A W Liley and K A North. An electrical investigation of effects of repetitivestimulation on mammalian neuromuscular junction. J Neurophysiol, 16(5):509 527, Sep 1953.
W J Betz. Depression of transmitter release at the neuromuscular junction of thefrog. J Physiol, 206(3):629 644, 1970.
These were, of course, published before the term "computation neuroscience" was used. The first proposed a mathematical model for vesicle pool depletion, which is still in use today. The second was the first to extend this with the release probability as a dynamic variable. These ideas were then further popularised by these classic papers:
L F Abbott, J A Varela, K Sen, and S B Nelson. Synaptic depression and corticalgain control. Science, 275(5297):220 224, Jan 1997.
M V Tsodyks and H Markram. The neural code between neocortical pyramidalneurons depends on neurotransmitter release probability. Proc Natl Acad Sci U SA, 94(2):719 723, Jan 1997.
What I found have during my collaborations with biologists was that not so much the precise mathematical formulation, but the very basic ideas and concepts explored in these papers have made a strong impact in the whole field, and have certainly cleared the way for numerous further theoretical studies.
Another paper I have come across just recently which I would consider as rather important and useful is this:
J J Hopfield and A V M Herz. Rapid Local Synchronization of Action Potentials: Toward Computation with Coupled Integrate-and-Fire Neurons. Proc Natl Acad Sci U SA, 92(15): 6655-6662, Jul 1995.
Cited more than 150 times, it contains some strong results regarding the behaviour of recurrent networks, and also anticipates a number of results shown more recently.
--
Here is my top 12 papers, in chronological order. I have gone for ones that make my science heart sing, that introduce a big idea, useful tool, connect experiment and theory in a satisfying way, or are an example ofwork on a topic that has been mysteriously under-represented.
I have tried to briefly qualify why they could be thought of as classic by the wider community.
1) Willshaw and von der Malsburg (1979). Future hot topic: modelling development Excellent interaction between theory and experiment - predicted ephrins and eph receptors. http://www.jstor.org/stable/pdfplus/2418226.pdf2) Laughlin (1981) Z. Naturforsch. C 36:910-2 Big idea: coding matches stimulus statistics. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&TermToSearch=73038233) Srinivasan et al. (1982) Proc. Roy. Soc. B 216(1205):427-59 Excellent interaction between theory and experiment: predicts responses of first order visual interneurons if they exploit spatial and temporal correlations to reduce redundancy. http://www.kyb.tuebingen.mpg.de/bethgegroup/teaching/ws0708_sem_retina_whitening/Srinivasan_et_al_1982.pdf
4) Buchsbaum and Gottschalk (1983). Proc. R. Soc. B 220:89-113 Excellent interaction between theory and experiment: uses PCA to accurately calculate the colour channels that maximise information transmission. Deserves to be more widely known. http://www.jstor.org/stable/pdfplus/35873.pdf
5) Bialek et al. (1991) Science Useful application for theorist: neat method for calculating stimulus filters in the response. http://www2.hawaii.edu/~sstill/neural_code_91.pdf
6) Treves and Rolls (1992) Hippocampus 2(2):189-99 Excellent interaction between theory and experiment: identified the function of the dentate gyrus in the hippocampus, and matched network organisation to function far more successfully that Marr. http://www3.interscience.wiley.com/cgi-bin/fulltext/109711333/PDFSTART7) Van Hateren (1992) J. Comp Phys. A 171:157-170 Excellent interaction between theory and experiment: predicts visual spatiotemporal receptive fields of cells connected to photoreceptors in the fly so as to maximise information about natural images from first principles, with stunning success. http://www.springerlink.com/content/h4681x344j378229/fulltext.pdf
8) Wolpert et al. (1995) Science 269(5232):1880-2 Big idea: internal models and the use of priors. http://keck.ucsf.edu/~houde/sensorimotor_jc/DMWolpert95a.pdf
9) Zemel et al. (1998) Neur. Comp. 10(2):403-30 Big idea: neurons encode distributions, not single values http://www.gatsby.ucl.ac.uk/~dayan/papers/zdp98.pdf
10) Van Rossum et al. (2000) J. Neuro. 20(23):8812-21 Excellent interaction between theory and experiment: Simple application of Fokker-Planck equation physics to explain functional consequences to the network of cellular level experimental data. http://www.jneurosci.org/cgi/reprint/20/23/8812.pdf
11) Brunel (2000) J. Comp. Neuro 8:183-208 Useful application for theorist: calculations of the population activity of a network of integrate-and-fire neurons. http://www.springerlink.com/content/u446l5722lp03677/fulltext.pdf
12) Schreiber (2000) Physical Review Letters 85(2):461-64 Future hot topic: Current best method to infer causal relationships between neurons using information theory. http://prola.aps.org/pdf/PRL/v85/i2/p461_1
--
-Cincinnatus
------------------------------------------------------------------------------------------
This is a collection of references obtained in response to a request for key papers from the computational neuroscience community. I have excluded self-citations (but many of those excluded papers actually appear in my own list of key papers below). I have removed the names of respondents, but have left their comments in, as these can be very useful.
Many thanks to all those who contributed to this wide-ranging collection.
Jim Stone, 18th July 2008.
--
JV Stone's key papers:
SB Laughlin. A simple coding procedure enhances a neuron's informationcapacity. Z Naturforsch, 36c:910{912, 1981.See other papers by Laughlin which cover similar material.
Lettvin, J.Y., Maturana, H.R., McCulloch, W.S., and Pitts, W.H., What the Frog¼s Eye Tells the Frog's Brain, Proc. Inst. Radio Engr. 47:1940-1951, 1959.
Ballard, DH, Cortical connections and parallel processing: Structure and function, in Vision, in Brain and cooperative computation, pp 563-621, 1987, Arbib, MA and Hanson AR (Eds).
Y Weiss, EP Simoncelli, and EH Adelson. Motion illusions as optimal percepts. Nature Neuroscience, 5(6):598 604, 2002.
BA Olshausen and DJ Field. Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14:481 487, 2004.
T Poggio, V Torre, and C Koch. Computational vision and regularization theory. Nature, 317:314 319, 1985.
AA Stocker and EP Simoncelli. Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience, 9(4):578 585, 2006.
Marr, D., and T. Poggio. <http://cbcl.mit.edu/people/poggio/journals/marr-poggio-science-1976.pdf>Cooperative Computation of Stereo Disparity, Science, 194, 283-287, 1976.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-propagating errors. Nature, 323, 533--536.
Hinton, G. E. and Nowlan, S. J. How learning can guide evolution. Complex Systems, 1, 495--502.
Hinton, G. E. and Plaut, D. C. Using fast weights to deblur old memories. Proceedings of the Ninth Annual Conference of the Cognitive Science Society, Seattle, WA
Becker, S. and Hinton, G. E. A self-organizing neural network that discovers surfaces in random-dot stereograms. Nature, 355:6356, 161-163
Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147-169.
@article{DURBIN_WILLSHAW_TSP, author ="Durbin, R and Willshaw, D", title = "An analogue approach to the traveling salesman problem using an elastic net method", journal = "Nature", volume = "326", number = "6114", pages = "689-691", month = "", year = "1987" }
@article{DOUGLAS_CANONICAL_89, author = "Douglas, RJ and Martin, KAC and Whitteridge, D", title = "A Canonical Microcircuit for Neocortex", journal = "Neural Computation", volume = "1", number = "", pages = "480-488", month = "", year = "1989" }
@article{SWINDALE82, author = "Swindale, NV", title = "A model for the formation of orientation columns", journal = "Proceedings Royal Society London B", volume = "215", number = "", pages = "211-230", month = "", year = "1982" }
Zohary, E, Shadlen, MN and Newsome, WT (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140-143.
Hopfield's papers (see below).
--
Hodgkin and Huxley 1952d (the modeling paper)
--
Song and Abbott: Cortical development and remapping through spike timing-dependent plasticity.Neuron 32:339-50, 2001
and
Buonomano and Merzevich: Temporal information transformed into a spatial code by a neural network with realistic properties.Science. 1995 Feb 17;267(5200):1028-30.
--
Wilson HR, Cowan JD.Excitatory and inhibitory interactions in localized populations of modelneurons. Biophys J. 1972 Jan;12(1):1-24.
H.B. Barlow, The mechanical mind.Ann. Rev. Neurosci. 13 15-24 (1990)It is about a simple model of consciousness.
--
From the cognitive side of computational neuroscience and I recommend:
Pouget A, Deneve S, Duhamel JR (2002) A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci. 3: 741-747.
Hamker, F.H., Zirnsak, M., Calow, D., Lappe, M. (2008)ÝThe peri-saccadic perception of objects and space.ÝPLOS Computational Biology 4(2):e21
Olshausen BA, Field DJ. 1996. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-9.
--
I was really influenced by
@article{Atick92, Author = {Atick, Joseph J.}, Journal = {Network: {C}omputation in {N}eural {S}ystems}, Number = {2}, Pages = {213--52}, Title = {Could {I}nformation {T}heory {P}rovide an {E}cological {T}heory of {S}ensory {P}rocessing?}, Volume = {3}, Year = {1992}}
which is a review paper rather related to the seminal papers from Barlow and Marr.
--
Wilson HR, Cowan JD.Excitatory and inhibitory interactions in localized populations of modelneurons.Biophys J. 1972 Jan;12(1):1-24.
--
Wiring Optimization Dmitri B. ChklovskiiTraub's CA1 model/Pinsky Rinzel 2 compartmental modelsErik De Schutter's Purkinje cell modelsHenry Markram's Cortical ModelsRolls & Treves - Hippocampal NetworkPolsky & Mel - 2layer pyramidal cell modelTerry Sejnowski - Synapse, modeldbUpinder S Bhalla - Million Synapses / Bistable systems
--
These papers introduced accurate models of calcium dynamics and neuromodulatory effects on ion channel activity.
Bhalla US, Iyengar R.Emergent properties of networks of biological signaling pathways.Science. 1999 Jan 15;283(5400):381-7.
Zador A, Koch C, Brown TH.Biophysical model of a Hebbian synapse.Proc Natl Acad Sci U S A. 1990 Sep;87(17):6718-22.
Holmes WR, Levy WB.AbstractInsights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes.J Neurophysiol. 1990 May;63(5):1148-68.
--
There are two theoretical papers which, in my opinion, have had a strong influence on the way we think about synaptic transmission and short term plasticity today:
A W Liley and K A North. An electrical investigation of effects of repetitivestimulation on mammalian neuromuscular junction. J Neurophysiol, 16(5):509 527, Sep 1953.
W J Betz. Depression of transmitter release at the neuromuscular junction of thefrog. J Physiol, 206(3):629 644, 1970.
These were, of course, published before the term "computation neuroscience" was used. The first proposed a mathematical model for vesicle pool depletion, which is still in use today. The second was the first to extend this with the release probability as a dynamic variable. These ideas were then further popularised by these classic papers:
L F Abbott, J A Varela, K Sen, and S B Nelson. Synaptic depression and corticalgain control. Science, 275(5297):220 224, Jan 1997.
M V Tsodyks and H Markram. The neural code between neocortical pyramidalneurons depends on neurotransmitter release probability. Proc Natl Acad Sci U SA, 94(2):719 723, Jan 1997.
What I found have during my collaborations with biologists was that not so much the precise mathematical formulation, but the very basic ideas and concepts explored in these papers have made a strong impact in the whole field, and have certainly cleared the way for numerous further theoretical studies.
Another paper I have come across just recently which I would consider as rather important and useful is this:
J J Hopfield and A V M Herz. Rapid Local Synchronization of Action Potentials: Toward Computation with Coupled Integrate-and-Fire Neurons. Proc Natl Acad Sci U SA, 92(15): 6655-6662, Jul 1995.
Cited more than 150 times, it contains some strong results regarding the behaviour of recurrent networks, and also anticipates a number of results shown more recently.
--
Here is my top 12 papers, in chronological order. I have gone for ones that make my science heart sing, that introduce a big idea, useful tool, connect experiment and theory in a satisfying way, or are an example ofwork on a topic that has been mysteriously under-represented.
I have tried to briefly qualify why they could be thought of as classic by the wider community.
1) Willshaw and von der Malsburg (1979). Future hot topic: modelling development Excellent interaction between theory and experiment - predicted ephrins and eph receptors. http://www.jstor.org/stable/pdfplus/2418226.pdf2) Laughlin (1981) Z. Naturforsch. C 36:910-2 Big idea: coding matches stimulus statistics. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&TermToSearch=73038233) Srinivasan et al. (1982) Proc. Roy. Soc. B 216(1205):427-59 Excellent interaction between theory and experiment: predicts responses of first order visual interneurons if they exploit spatial and temporal correlations to reduce redundancy. http://www.kyb.tuebingen.mpg.de/bethgegroup/teaching/ws0708_sem_retina_whitening/Srinivasan_et_al_1982.pdf
4) Buchsbaum and Gottschalk (1983). Proc. R. Soc. B 220:89-113 Excellent interaction between theory and experiment: uses PCA to accurately calculate the colour channels that maximise information transmission. Deserves to be more widely known. http://www.jstor.org/stable/pdfplus/35873.pdf
5) Bialek et al. (1991) Science Useful application for theorist: neat method for calculating stimulus filters in the response. http://www2.hawaii.edu/~sstill/neural_code_91.pdf
6) Treves and Rolls (1992) Hippocampus 2(2):189-99 Excellent interaction between theory and experiment: identified the function of the dentate gyrus in the hippocampus, and matched network organisation to function far more successfully that Marr. http://www3.interscience.wiley.com/cgi-bin/fulltext/109711333/PDFSTART7) Van Hateren (1992) J. Comp Phys. A 171:157-170 Excellent interaction between theory and experiment: predicts visual spatiotemporal receptive fields of cells connected to photoreceptors in the fly so as to maximise information about natural images from first principles, with stunning success. http://www.springerlink.com/content/h4681x344j378229/fulltext.pdf
8) Wolpert et al. (1995) Science 269(5232):1880-2 Big idea: internal models and the use of priors. http://keck.ucsf.edu/~houde/sensorimotor_jc/DMWolpert95a.pdf
9) Zemel et al. (1998) Neur. Comp. 10(2):403-30 Big idea: neurons encode distributions, not single values http://www.gatsby.ucl.ac.uk/~dayan/papers/zdp98.pdf
10) Van Rossum et al. (2000) J. Neuro. 20(23):8812-21 Excellent interaction between theory and experiment: Simple application of Fokker-Planck equation physics to explain functional consequences to the network of cellular level experimental data. http://www.jneurosci.org/cgi/reprint/20/23/8812.pdf
11) Brunel (2000) J. Comp. Neuro 8:183-208 Useful application for theorist: calculations of the population activity of a network of integrate-and-fire neurons. http://www.springerlink.com/content/u446l5722lp03677/fulltext.pdf
12) Schreiber (2000) Physical Review Letters 85(2):461-64 Future hot topic: Current best method to infer causal relationships between neurons using information theory. http://prola.aps.org/pdf/PRL/v85/i2/p461_1
--
Last edited by a moderator: