- #1
soarce
- 155
- 24
bounded solutions of a system of coupled liniar Schrodinger equations
Hi.
I study the following system of four coupled liniar Schrodinger equations:
[itex]
i\delta \left(\begin{array}{c}f&h&g&q \end{array}\right) =
\left(\begin{array}{cccc}
-L_p&-a_1&-a_2&-a_2\\
a_1&L_p&a_2&a_2\\
-a_3&-a_3&-L_c&-a_4\\
a_3&a_3&a_4&L_c
\end{array}\right)
\left(\begin{array}{c}f&h&g&q \end{array}\right)
[/itex]
where [itex]L_{p,c}=\frac{d^2}{dr^2}+\frac{1}{r}\frac{d}{dr}-\frac{m^2}{r^2}-\beta_{p,c}[/itex]
[itex]\beta_{p,c}>0[/itex], [itex]m[/itex] is integer.
The coeficients [itex]a_j(r)[/itex] are real functions given numerically, they have no singularity on [itex][0,\infty)][/itex], and they fulfill
[itex]\lim_{r\rightarrow\infty} a_j(r)=0[/itex]
I am interested in finding the bound states [itex](f,h,g,q)[/itex] and their eigenvalues, or at least finding some condition for their existence. I will appreciate any idea or any reference (book or article) on how one might solve this problem. I must say that I am physicist.
Thank you.
Hi.
I study the following system of four coupled liniar Schrodinger equations:
[itex]
i\delta \left(\begin{array}{c}f&h&g&q \end{array}\right) =
\left(\begin{array}{cccc}
-L_p&-a_1&-a_2&-a_2\\
a_1&L_p&a_2&a_2\\
-a_3&-a_3&-L_c&-a_4\\
a_3&a_3&a_4&L_c
\end{array}\right)
\left(\begin{array}{c}f&h&g&q \end{array}\right)
[/itex]
where [itex]L_{p,c}=\frac{d^2}{dr^2}+\frac{1}{r}\frac{d}{dr}-\frac{m^2}{r^2}-\beta_{p,c}[/itex]
[itex]\beta_{p,c}>0[/itex], [itex]m[/itex] is integer.
The coeficients [itex]a_j(r)[/itex] are real functions given numerically, they have no singularity on [itex][0,\infty)][/itex], and they fulfill
[itex]\lim_{r\rightarrow\infty} a_j(r)=0[/itex]
I am interested in finding the bound states [itex](f,h,g,q)[/itex] and their eigenvalues, or at least finding some condition for their existence. I will appreciate any idea or any reference (book or article) on how one might solve this problem. I must say that I am physicist.
Thank you.
Last edited: