Calculating CFM for Compressed Air Venting Down to Atmospheric Pressure

AI Thread Summary
The discussion focuses on calculating the time it takes for a compressed air cylinder at 150 PSI and a volume of 7.3 cu in to vent to atmospheric pressure through a 1.77mm opening. The user is struggling to understand the need for air velocity in determining CFM and how to calculate that velocity since many resources seem circular. They mention the complexities of the problem, including non-linear dynamics and the cooling of gas, and refer to relevant equations like Boyle's Law and Bernoulli's equation. Despite initial confusion, they express progress in understanding the calculations, although the results seem implausible, indicating further refinement is needed. The conversation highlights the challenges of fluid dynamics in compressed air venting scenarios.
Nuttypro67
2
0
Hello gentlemen! I'm rather new to this whole complex world we call compressed air. :) Put simply, I have spent the past 4 hours trying to find this answer anywhere and I am just not informed enough about all these numbers to get what I need to find out.

I have an air cylinder that is compressed to 150 PSI with a volume of 7.3 cu in. I am trying to find out how long it will take for the 150PSI to vent down to atmospheric pressure through an opening that is 1.77mm in diameter.

I realize I need to find CFM, Cubic Feet per Minute. But everywhere I look the calculator asks for velocity of the air. For some reason I just can't grasp why you would need the velocity of the air to figure out how much is moving through the opening. Nor do I have any idea how to figure the velocity since all the velocity equations I found are asking for the CFM!

Thanks guys!
 
Engineering news on Phys.org
I was going to post that same link. The difficult part of finding the leak time for a pressure vessel is the fact that it is a highly nonlinear coupled problem (the gas is cooling, the pressure is changing, and the flow rate may or may not be choked flow, etc...). You best bet for a plug-and-play answer are the equations provided in the posted link.
 
It is a fluid dynamics problem...

see;
Boyle's Law
Bernoulli's equation

Google;
blowdown air orifice
blowdown orifice flowrate

For critical flow, see;
http://www.cheresources.com/high_dp_orifice_flow.shtml

Some of the complexities are considered here;
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JPVTAS000131000003034501000001&idtype=cvips&gifs=yes

Hope this helps.
 
Last edited by a moderator:
hmmm, well I THINK I got the equation to work but the results its kicking out just don't make any sense.
According to the results, it will take 788,153 seconds or 9 days for the vessel to reach 50% density. Haha!
Thanks a MILLION for the equation, though. I am now 10 times closer to my answer than I was yesterday. You guys are great. :)
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Back
Top