Resolve the Bug-Rivet Paradox - Strange SR Paradox

In summary, according to the article, the bug gets squished by the rivet. There is an invalid assumption implied in that assumption is that the rivet is rigid. In reality, the rivet is not rigid, and so the bug gets squished. It is also explained in the article that to resolve the paradox, one would need to assume maximum rigidity, which is not realistic. There is also a more formal solution that I would like to see.
  • #1
zefram_c
259
0
Does anyone know of a resolution to the bug and rivet paradox? It is outlined here:

http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/bugrivet.html#c1

My first guess is that the rivet does not reach the bug, and the rivet's predictions are wrong because it undergoes infinite acceleration. However, I would like to see a more formal solution.
 
Physics news on Phys.org
  • #2
zefram_c said:
Does anyone know of a resolution to the bug and rivet paradox? It is outlined here:

http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/bugrivet.html#c1

My first guess is that the rivet does not reach the bug, and the rivet's predictions are wrong because it undergoes infinite acceleration. However, I would like to see a more formal solution.

The invalid assumption, which makes it a paradox, is that the rivet is rigid. It is not. To determine if the bug gets squashed requires calculation. Give it a try using the Lorentz transformation equations and note that no signal can travel faster than c. Note that such to resolve such a paradox imply maximum rigidity (i.e. contortions in metal travel at c) and other silly things. In reality the rivet would snip off the head and pass right through the metal destroying it, melting/vaporizing the bug in the process.

I highly suggest following the derivation in that page. I've scanned over it and it seems that close attention needs to be payed. Use the Lorentz transformation as well as the way they calculate it there. I am unable to sit long enough to read these pages closely and am unable to read it now (herniated disk, can't sit for more than a minute or so)

Notice in particular this part - from Rivet frame of reference
The bug disagrees with this analysis and finds the time for the rivet head to hit the wall is earlier than the time for the rivet end to reach the bottom of the hole. The paradox is not resolved.
There is an invalid assumption implied here. It implies that once the rivet end reaches the wall that the rivet head stops simultaneously. That can't happen. If it did then we'd be able to communitcate faster than light.



<ignore previous response. I had another paradox in mind, i.e. rivet contracted length was same as rivet hole length>
 
Last edited:
  • #3
pmb_phy said:
The invalid assumption is that the rivet is rigid. It is not. In one frame one end stops before the other and in another frame each end stops at the same time. One has to account for the finite elasticity. Its invalid to assume that the rigidity is infinite.

Correction - in neither frame do they both stop at the same time. The picture 1 is not the scenario. It is a comparison of their proper lengths and even if it was the scenario they are not even the same length in that picture. To answer the question actually asked, yes the bug gets squished and absolutley does so according to both frames and yes I can give a rigorous solution. According to the frame of the wall the lip of the rivet hits first. The impulse speed stopping the matter of the rivet is limited to the speed of light. Therefor a signal can not travel the length of the rivet from right to left in a time less than that which can be solved from [tex]\Delta t_{signal} = \frac{\frac{1}{\gamma }L_{0-rivet} - v\Delta t_{signal}}{c}[/tex]. The minus sign is chosen consistent with their choice of negative sign on v in picture 2. The time it would take for a particle traveling at the rivets speed to reach the bug if it starts a distance [tex]\frac{1}{\gamma}L_{0-rivet}[/tex] inside the hole at the moment the lip hits is [tex]\Delta t_{particle} = \frac{L_{0-hole} - \frac{1}{\gamma }L_{0-rivet}}{-v}[/tex]. Again the sign chosen consistent with that from picture 2. All you have to do from here is solve for the time from the first equation and plug in the numbers and you'll see that the first time calculated is longer than the second time calculated. That means that in order for the lip impacting to somehow stop the rivets particles at the left surface from impacting the signal would have to travel faster than the speed of light. Yes faster than c information transfer would lead to a paradox for this special relativistic scenario, but the impulse speed is less than c for any real matterials so there is no paradox. The exact same kind of analysis can be done for picture 3 to show that it would require faster than c information transfer in order to stop the lip from impacting. So the answer is that in both frames the rivet deforms however necessary so that both ends impact. The more interesting question is what is the final state of the rivet after impact. After oscillations damp down, is the proper length longer than it initially was as you would think from pictures 1 or 2 or is it less than it initially was as you would think from picture 3. In order to answer that question one needs to know the elasticity and dampening properties of the matterial that the rivet is made of.
 
Last edited:
  • #4
Thanks guys. My feeble excuse is that in all of the SR related courses I took and books I read, none put any special emphasis on the fact that SR excludes perfectly rigid bodies as the rived is implicitly assumed to behave. In fact I don't think any of them even mentioned as much.
 
  • #5
zefram_c said:
Thanks guys. My feeble excuse is that in all of the SR related courses I took and books I read, none put any special emphasis on the fact that SR excludes perfectly rigid bodies as the rived is implicitly assumed to behave. In fact I don't think any of them even mentioned as much.
Your welcome.

Einstein wrote a paper on this very early on. That paper was called

On the Inertia of Energy Required by the Principle of Relativity, Albert Einstein, Annalen der Physik 23 (1907). The subsection, No. 3, is called Remarks concerning the dynamics of the rigid body.
 
Last edited:
  • #6
Curiously, even a physicist of the value of Max Born stumbled with it, he devised a model for a rigid body in special relativity
 

FAQ: Resolve the Bug-Rivet Paradox - Strange SR Paradox

What is the Bug-Rivet Paradox?

The Bug-Rivet Paradox is a thought experiment that highlights the strange and counterintuitive implications of Einstein's theory of Special Relativity. It involves a bug crawling along a moving train and a rivet on the train's surface, and examines how their relative motion affects our perception of time and space.

What is the Strange SR Paradox?

The Strange SR Paradox is a variation of the Bug-Rivet Paradox that adds an additional element - a mirror on the train's ceiling. It explores the concept of simultaneity and how it can be perceived differently by observers in different reference frames.

How do these paradoxes relate to Einstein's theory of Special Relativity?

Both the Bug-Rivet Paradox and the Strange SR Paradox illustrate the consequences of the theory of Special Relativity, which states that the laws of physics are the same for all inertial observers and that the speed of light is constant in all reference frames.

Can the Bug-Rivet Paradox and the Strange SR Paradox be resolved?

Yes, both paradoxes can be resolved by understanding and applying the principles of Special Relativity. By considering the effects of time dilation and length contraction due to relative motion, the paradoxes can be explained and no longer appear contradictory.

Why are these paradoxes important in the field of science?

The Bug-Rivet Paradox and the Strange SR Paradox are important thought experiments that help us to better understand the implications of Special Relativity and the nature of space and time. They also challenge our intuition and demonstrate the need for abstract thinking in scientific inquiry.

Similar threads

Replies
4
Views
15K
Replies
24
Views
2K
Replies
4
Views
2K
Replies
43
Views
4K
Replies
172
Views
17K
Replies
9
Views
4K
Back
Top