- #1
LennoxLewis
- 129
- 1
Actually, i have two questions:
1. Because of the Pauli exclusion principle, there can be degeneracy pressure, for instance in neutron stars, but also in electron gasses (and any fermion cluster?). What force causes this pressure?
2. According to the Pauli Exclusion principle, no two fermions can have the same state in the same position. Now, by his formula, you can calculate delta x if you insert delta p, but states are integers. So, at what "range" does this principle work? How far away must a fermion be from the other, in order to still be in the same quantum state?
1. Because of the Pauli exclusion principle, there can be degeneracy pressure, for instance in neutron stars, but also in electron gasses (and any fermion cluster?). What force causes this pressure?
2. According to the Pauli Exclusion principle, no two fermions can have the same state in the same position. Now, by his formula, you can calculate delta x if you insert delta p, but states are integers. So, at what "range" does this principle work? How far away must a fermion be from the other, in order to still be in the same quantum state?