- #1
kingwinner
- 1,270
- 0
Theorem:
For all a,b,c E Z such that a and b are not both 0,
there exist x,y E Z such that ax+by=c <=> gcd(a,b)|c.
Here is my attempt of proving it...
(<=) Sppose gcd(a,b)|c
By theorem, there exists k,m E Z such that gcd(a,b) = ka+mb
Now gcd(a,b)|c => gcd(a,b)=c/s for some s E Z.
=> c/s = ka+mb => c=(ks)a+ (ms)b with (ks) and (ms) integers.
But I have some trouble proving the converse of this.
(=>) Suppose there exist x,y E Z such that ax+by=c.
By theorem, there exists k,m E Z such that gcd(a,b) = ka+mb
Now I need to prove that gcd(a,b)|c, i.e. c = r gcd(a,b) for some r E Z. How can we prove this? I really have no idea at this point...
Can someone please help me?
For all a,b,c E Z such that a and b are not both 0,
there exist x,y E Z such that ax+by=c <=> gcd(a,b)|c.
Here is my attempt of proving it...
(<=) Sppose gcd(a,b)|c
By theorem, there exists k,m E Z such that gcd(a,b) = ka+mb
Now gcd(a,b)|c => gcd(a,b)=c/s for some s E Z.
=> c/s = ka+mb => c=(ks)a+ (ms)b with (ks) and (ms) integers.
But I have some trouble proving the converse of this.
(=>) Suppose there exist x,y E Z such that ax+by=c.
By theorem, there exists k,m E Z such that gcd(a,b) = ka+mb
Now I need to prove that gcd(a,b)|c, i.e. c = r gcd(a,b) for some r E Z. How can we prove this? I really have no idea at this point...
Can someone please help me?
Last edited: