Finding the Derivative of x = sin(a)/cos(b) with Given Constraints

  • Thread starter Thread starter Gekko
  • Start date Start date
Click For Summary
The discussion centers on finding the derivative da/dx for the equation x = sin(a) / cos(b) under the constraints a + b < pi/2 and a, b > 0. The initial attempt at a solution yields da/dx = cos(b) / cos(a), but the desired form involves cos(a+b)cos(a-b), leading to confusion over the identity. A counterexample using specific values for a and b demonstrates that the proposed equality does not hold, suggesting a potential error in the problem statement. Participants agree that the original equation may contain a mistake, as the derived identities do not match.
Gekko
Messages
69
Reaction score
0

Homework Statement



x=sin(a) / cos(b)

a+b < pi/2
a>0, b>0

show that

da/dx = cos^3(b)cos(a) / cos(a+b)cos(a-b)


The Attempt at a Solution



dx/da = cos(a) / cos(b) therefore
da/dx = cos(b) / cos(a)

=cos^3(b)cos(a) / cos^2(b)cos^2(a)

However the denominator of the desired format = cos(a+b)cos(a-b) = cos^2(a)cos^2(b)-sin^2(a)sin^2(b)

Not sure how to get rid of the sin^2(a)sin^2(b) term...
 
Physics news on Phys.org
Gekko said:

Homework Statement



x=sin(a) / cos(b)

a+b < pi/2
a>0, b>0

show that

da/dx = cos^3(b)cos(a) / cos(a+b)cos(a-b)


The Attempt at a Solution



dx/da = cos(a) / cos(b) therefore
da/dx = cos(b) / cos(a)

=cos^3(b)cos(a) / cos^2(b)cos^2(a)

However the denominator of the desired format = cos(a+b)cos(a-b) = cos^2(a)cos^2(b)-sin^2(a)sin^2(b)

Not sure how to get rid of the sin^2(a)sin^2(b) term...
You are trying to show that cos(a+b)cos(a-b) = cos^2(b)cos^2(a). I am not able to find where you went wrong, but this equation isn't an identity.

As a counterexample, if a = b = pi/6, cos(a) = 1/2, cos(b) = 1/2, cos(a+b) = sqrt(3)/2 and cos(a - b) = 1.

Substituting these values into cos(a+b)cos(a-b) = cos^2(b)cos^2(a), you get sqrt(3)/2 * 1 on the left side and (1/4) * (1/4) on the right.
 
Are you sure you copied the problem down correctly?
 
Yes I did copy it down correctly. Obviously a mistake in the question as clearly that equality doesn't hold true

Thanks for your validation!
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K