- #1
JoernE
- 4
- 0
Consider the following non-homogenous heat equation on [itex]0 \leq x \leq \pi[/itex]
[itex]u_t = k u_{xx} - 1[/itex] with [itex]u(x,0) = 0, u(0,t) = 0, u(\pi, t) = 0[/itex]
Find a solution of the form
[itex]\displaystyle \sum_1^{\infty} b_n(t) \phi_n (x)[/itex]
where [itex]\phi_n(x)[/itex] are the eigenfunctions of an appropriate homogenous problem, and find explicit expressions for [itex]b_n(t)[/itex]
So I think
[itex]\phi_n(x) = \sin \frac{n \pi x}{L}[/itex]
so I find solutions in the form
[itex]\displaystyle u(x,t) = \sum_1^{\infty} b_n (t) \ \sin \frac{n \pi x}{L}[/itex]
Am I on the right track? Is the eigenfunction correct?
[itex]u_t = k u_{xx} - 1[/itex] with [itex]u(x,0) = 0, u(0,t) = 0, u(\pi, t) = 0[/itex]
Find a solution of the form
[itex]\displaystyle \sum_1^{\infty} b_n(t) \phi_n (x)[/itex]
where [itex]\phi_n(x)[/itex] are the eigenfunctions of an appropriate homogenous problem, and find explicit expressions for [itex]b_n(t)[/itex]
So I think
[itex]\phi_n(x) = \sin \frac{n \pi x}{L}[/itex]
so I find solutions in the form
[itex]\displaystyle u(x,t) = \sum_1^{\infty} b_n (t) \ \sin \frac{n \pi x}{L}[/itex]
Am I on the right track? Is the eigenfunction correct?