- #1
Nebuchadnezza
- 79
- 2
Here I have collected a large set of rather fun and somewhat special integrals. I have tried to order them from easiest to hardest. Please pm me if you:
1. think some of these integrals are not enjoyable.
2, If you have a fun integral.
3. If you think an integral is unsolvable.
4. If you think I should swap the ordering around.
The medium integrals and "OH MY GOD I NEED TO PLAY BANJO AND CRY" Integrals are coming up tomorrow. Although I think many of the veterans in here will have no problems with any of the integrals I am posting...
Please enjoy the first batch of the set:
Easy as 3.14159265
[tex]I \, = \, \int\limits_0^{\frac{\pi }{{3n}}} {\tan \left( {nx} \right) dx [/tex]
[tex]I \, = \, \int {\frac{{x{e^x}}}{{{{\left( {x + 1} \right)}^2}}}} dx [/tex]
[tex]I \, = \, \int\limits_1^{{e^n}} {\ln \left( x \right)} dx [/tex]
[tex]I \, = \, \int {\frac{1}{{x\ln x}} dx [/tex]
[tex]I \, = \, \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\sin {{\left( x \right)}^2} dx [/tex]
[tex]I \, = \, \int\limits_0^{\ln \left( 2 \right)} {\ln \left( {x + 1} \right){e^x} dx [/tex]
[tex]I \, = \, \int {\frac{x}{{{e^x}}} dx [/tex]
[tex]I \, = \, \int\limits_0^\pi {x\left( {\sin \left( x \right) + \cos \left( x \right)} \right) dx[/tex]
[tex]I \, = \, \int {\frac{{{e^x} + 1}}{{{e^x} - 1}}} dx [/tex]
[tex]I \, = \, \int {{2^x}{e^x}} dx [/tex]
[tex]I =\int\limits_0^{\frac{3}{4}\pi } {\sin \left( x \right)\cos \left( x \right) dx [/tex]
[tex]I \, = \, \int {{e^{x + {e^x}}}} dx [/tex]
[tex]I \, = \, \int {\frac{{{x^2} + 2x + 2}}{{x + 1}} dx [/tex]
[tex]I \, = \, \int {\frac{{x + b}}{{x - c}} dx [/tex]
[tex]I \, = \, \int\limits_0^\infty {{x^3}{e^{ - x}} dx [/tex]
[tex]I \, = \, \int {\frac{{x + 1}}{{x - 1}} dx [/tex]
[tex]I \, = \, \int {x{a^x}} dx [/tex]
[tex]I \, = \, \int {{e^x}\sin \left( x \right)} dx [/tex]
Does the following inequality hold?
[tex] {I_{B}} > {I_{A}} + {I_{C}} [/tex]
[tex] \text{Where}\;{I_{A}} = \int\limits_0^1 {\frac{1}{{1 + \sqrt x }} dx \; , \; {I_{B}} = \int\limits_0^1 {\frac{1}{{x + \sqrt x }}} dx \; \; \text{and}\;\;\,{I_{C}} = \int\limits_0^1 {\frac{{\sqrt x }}{{1 + \sqrt x }}} dx [/tex]
[tex]I \, = \, \int\limits_0^4 {\frac{1}{{1 + \sqrt x }}} dx [/tex]
[tex]I \, = \, \int {\sqrt {4 - x} } dx [/tex]
[tex]\text{Is} \, 12 \,>\, \int\limits_0^3 {\sqrt x } dx \, ?[/tex]
[tex]I \, = \, \int {\frac{1}{{x\ln {{\left( x \right)}^n}}} dx [/tex]
Find the area between the function [tex]f(x)[/tex] and the x-axis when [tex]f(x)=\sqrt{a-\sqrt{x}}[/tex]
[tex]I \, = \, \int\limits_0^4 {\frac{{\ln \left( x \right)}}{{\sqrt x }} dx [/tex]
[tex]I \, = \, \int\limits_1^{{{\left( {\ln \left( a \right)} \right)}^2}} {{e^{\sqrt x }}} dx [/tex] and [tex]a \, \ge \, 1[/tex]
[tex]I \, = \, \int\limits_{ - 1}^1 {\frac{{x + 1}}{{{{\left( {x + 2} \right)}^4}}} dx [/tex]
[tex]\text{Show that}\int {\left( {x + 3} \right){{\left( {x - 1} \right)}^5} dx \text{is equal to} \frac{1}{{21}}\left( {3x + 11} \right){{\left( {x - 1} \right)}^6} + C [/tex]
Medium
[tex]I \, = \, \int\limits_{\arccos \left( b \right)}^{\arcsin \left( b \right)} {\sin {{\left( x \right)}^2} dx [/tex]
1. think some of these integrals are not enjoyable.
2, If you have a fun integral.
3. If you think an integral is unsolvable.
4. If you think I should swap the ordering around.
The medium integrals and "OH MY GOD I NEED TO PLAY BANJO AND CRY" Integrals are coming up tomorrow. Although I think many of the veterans in here will have no problems with any of the integrals I am posting...
Please enjoy the first batch of the set:
Easy as 3.14159265
[tex]I \, = \, \int\limits_0^{\frac{\pi }{{3n}}} {\tan \left( {nx} \right) dx [/tex]
[tex]I \, = \, \int {\frac{{x{e^x}}}{{{{\left( {x + 1} \right)}^2}}}} dx [/tex]
[tex]I \, = \, \int\limits_1^{{e^n}} {\ln \left( x \right)} dx [/tex]
[tex]I \, = \, \int {\frac{1}{{x\ln x}} dx [/tex]
[tex]I \, = \, \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\sin {{\left( x \right)}^2} dx [/tex]
[tex]I \, = \, \int\limits_0^{\ln \left( 2 \right)} {\ln \left( {x + 1} \right){e^x} dx [/tex]
[tex]I \, = \, \int {\frac{x}{{{e^x}}} dx [/tex]
[tex]I \, = \, \int\limits_0^\pi {x\left( {\sin \left( x \right) + \cos \left( x \right)} \right) dx[/tex]
[tex]I \, = \, \int {\frac{{{e^x} + 1}}{{{e^x} - 1}}} dx [/tex]
[tex]I \, = \, \int {{2^x}{e^x}} dx [/tex]
[tex]I =\int\limits_0^{\frac{3}{4}\pi } {\sin \left( x \right)\cos \left( x \right) dx [/tex]
[tex]I \, = \, \int {{e^{x + {e^x}}}} dx [/tex]
[tex]I \, = \, \int {\frac{{{x^2} + 2x + 2}}{{x + 1}} dx [/tex]
[tex]I \, = \, \int {\frac{{x + b}}{{x - c}} dx [/tex]
[tex]I \, = \, \int\limits_0^\infty {{x^3}{e^{ - x}} dx [/tex]
[tex]I \, = \, \int {\frac{{x + 1}}{{x - 1}} dx [/tex]
[tex]I \, = \, \int {x{a^x}} dx [/tex]
[tex]I \, = \, \int {{e^x}\sin \left( x \right)} dx [/tex]
Does the following inequality hold?
[tex] {I_{B}} > {I_{A}} + {I_{C}} [/tex]
[tex] \text{Where}\;{I_{A}} = \int\limits_0^1 {\frac{1}{{1 + \sqrt x }} dx \; , \; {I_{B}} = \int\limits_0^1 {\frac{1}{{x + \sqrt x }}} dx \; \; \text{and}\;\;\,{I_{C}} = \int\limits_0^1 {\frac{{\sqrt x }}{{1 + \sqrt x }}} dx [/tex]
[tex]I \, = \, \int\limits_0^4 {\frac{1}{{1 + \sqrt x }}} dx [/tex]
[tex]I \, = \, \int {\sqrt {4 - x} } dx [/tex]
[tex]\text{Is} \, 12 \,>\, \int\limits_0^3 {\sqrt x } dx \, ?[/tex]
[tex]I \, = \, \int {\frac{1}{{x\ln {{\left( x \right)}^n}}} dx [/tex]
Find the area between the function [tex]f(x)[/tex] and the x-axis when [tex]f(x)=\sqrt{a-\sqrt{x}}[/tex]
[tex]I \, = \, \int\limits_0^4 {\frac{{\ln \left( x \right)}}{{\sqrt x }} dx [/tex]
[tex]I \, = \, \int\limits_1^{{{\left( {\ln \left( a \right)} \right)}^2}} {{e^{\sqrt x }}} dx [/tex] and [tex]a \, \ge \, 1[/tex]
[tex]I \, = \, \int\limits_{ - 1}^1 {\frac{{x + 1}}{{{{\left( {x + 2} \right)}^4}}} dx [/tex]
[tex]\text{Show that}\int {\left( {x + 3} \right){{\left( {x - 1} \right)}^5} dx \text{is equal to} \frac{1}{{21}}\left( {3x + 11} \right){{\left( {x - 1} \right)}^6} + C [/tex]
Medium
[tex]I \, = \, \int\limits_{\arccos \left( b \right)}^{\arcsin \left( b \right)} {\sin {{\left( x \right)}^2} dx [/tex]