- #1
- 24,775
- 792
The new A20 tabular calculator let's you look at changing geometry out to about 88 billion years according to the standard LCDM cosmic model (with usual estimates for the parameters.).
http://www.einsteins-theory-of-relativity-4engineers.com/CosmoLean_A20.html
It's pretty neat. Here is one sample tabulation. Red stuff is just the three standard parameters, estimated based on observation. No reason to change them, although in this calculator you CAN change them and play around to see the effects.
The blue stuff is what I put into give bounds and step size for the table I wanted it to generate
From the present (S=1) to the distant future (S=0.01) when distances are 100 times what they are today. In steps of ΔS = 0.09. those are just what I chose. If you choose a smaller step size like ΔS = 0.01 you get a table with more rows, like around 100 rows instead of only 12 rows. I won't bother to align the columns. It's probably legible as is.
===quote===
Hubble time now (Ynow) 13.9 Gy Change as desired (9 to 16 Gy)
Hubble time at infinity (Yinf) 16.3 Gy Change as desired (larger than Ynow)
Radiation and matter crossover (S_eq) 3350 Radiation influence (inverse: larger means less influence)
Upper limit of Stretch range (S_upper) 1.0 S value at the top row of the table (equal or larger than 1)
Lower limit of Stretch range (S_lower) 0.01 S value at the bottom row of table (S_lower smaller than S_upper)
Step size (S_step) 0.09 Step size for output display (equal or larger than 0.01)
Stretch (S) Scale (a) Time (Gy) T_Hubble (Gy) D_now (Gly) D_then (Gly)
1.000 1.000 13.769 13.896 0.000 0.000
0.910 1.099 15.104 14.387 -1.219 -1.339
0.820 1.220 16.630 14.829 -2.536 -3.093
0.730 1.370 18.374 15.221 -3.884 -5.320
0.640 1.563 20.402 15.545 -5.270 -8.234
0.550 1.818 22.772 15.812 -6.676 -12.138
0.460 2.174 25.618 16.006 -8.108 -17.627
0.370 2.703 29.120 16.143 -9.555 -25.825
0.280 3.571 33.629 16.233 -11.010 -39.323
0.190 5.263 39.934 16.278 -12.474 -65.650
0.100 10.000 50.390 16.296 -13.939 -139.393
0.010 100.000 87.919 16.300 -15.406 -1540.607
For the model used, see this thread on Physicsforums.
=====endqquote=====
what this tells you, among other things, is which of the galaxies out there you can reach if you flash a signal to them today.
It says ANYTHING THAT IS TODAY NEARER THAN 15.4 BILLION LY is a target you can reach if you flash a message today, and it will get there WITHIN 88 BILLION YEARS.
It also says that 88 billion years from now is when distances will be 100 times what they are today (cosmological distances, not dimensions of bound structures like a rock or solar system)
So if you select a galaxy which is today 15.4 billion LY and you flash a message today, when the message finally gets there the distance to the galaxy (and the message arriving at it) will be 1540 billion LY.
You can read that off the table too.
Is there anyone to whom this does NOT make sense. This is a great calculator and an interactive version of the standard cosmic model that is in professional use (LCDM) and there must be plenty of people who can explain if you find anything obscure about the table. Everybody should get so they understand the table outputs of this calculator both of past history and of the future, IMHO. They are basic.
http://www.einsteins-theory-of-relativity-4engineers.com/CosmoLean_A20.html
It's pretty neat. Here is one sample tabulation. Red stuff is just the three standard parameters, estimated based on observation. No reason to change them, although in this calculator you CAN change them and play around to see the effects.
The blue stuff is what I put into give bounds and step size for the table I wanted it to generate
From the present (S=1) to the distant future (S=0.01) when distances are 100 times what they are today. In steps of ΔS = 0.09. those are just what I chose. If you choose a smaller step size like ΔS = 0.01 you get a table with more rows, like around 100 rows instead of only 12 rows. I won't bother to align the columns. It's probably legible as is.
===quote===
Hubble time now (Ynow) 13.9 Gy Change as desired (9 to 16 Gy)
Hubble time at infinity (Yinf) 16.3 Gy Change as desired (larger than Ynow)
Radiation and matter crossover (S_eq) 3350 Radiation influence (inverse: larger means less influence)
Upper limit of Stretch range (S_upper) 1.0 S value at the top row of the table (equal or larger than 1)
Lower limit of Stretch range (S_lower) 0.01 S value at the bottom row of table (S_lower smaller than S_upper)
Step size (S_step) 0.09 Step size for output display (equal or larger than 0.01)
Stretch (S) Scale (a) Time (Gy) T_Hubble (Gy) D_now (Gly) D_then (Gly)
1.000 1.000 13.769 13.896 0.000 0.000
0.910 1.099 15.104 14.387 -1.219 -1.339
0.820 1.220 16.630 14.829 -2.536 -3.093
0.730 1.370 18.374 15.221 -3.884 -5.320
0.640 1.563 20.402 15.545 -5.270 -8.234
0.550 1.818 22.772 15.812 -6.676 -12.138
0.460 2.174 25.618 16.006 -8.108 -17.627
0.370 2.703 29.120 16.143 -9.555 -25.825
0.280 3.571 33.629 16.233 -11.010 -39.323
0.190 5.263 39.934 16.278 -12.474 -65.650
0.100 10.000 50.390 16.296 -13.939 -139.393
0.010 100.000 87.919 16.300 -15.406 -1540.607
For the model used, see this thread on Physicsforums.
=====endqquote=====
what this tells you, among other things, is which of the galaxies out there you can reach if you flash a signal to them today.
It says ANYTHING THAT IS TODAY NEARER THAN 15.4 BILLION LY is a target you can reach if you flash a message today, and it will get there WITHIN 88 BILLION YEARS.
It also says that 88 billion years from now is when distances will be 100 times what they are today (cosmological distances, not dimensions of bound structures like a rock or solar system)
So if you select a galaxy which is today 15.4 billion LY and you flash a message today, when the message finally gets there the distance to the galaxy (and the message arriving at it) will be 1540 billion LY.
You can read that off the table too.
Is there anyone to whom this does NOT make sense. This is a great calculator and an interactive version of the standard cosmic model that is in professional use (LCDM) and there must be plenty of people who can explain if you find anything obscure about the table. Everybody should get so they understand the table outputs of this calculator both of past history and of the future, IMHO. They are basic.