- #1
- 22,183
- 3,325
- Author: Stephen Friedberg, Arnold Insel, Lawrence Spence
- Title: Linear Algebra
- Amazon link https://www.amazon.com/dp/0130084514/?tag=pfamazon01-20
- Prerequisities: Being acquainted with proofs and rigorous mathematics. Knowing what matrices and determinants are, is also helpful.
- Level: Undergrad
Table of Contents:
Code:
[LIST]
[*] Preface
[*] Vector Spaces
[LIST]
[*] Introduction
[*] Vector Spaces
[*] Subspaces
[*] Linear Combinations and Systems of Linear Equations
[*] Linear Dependence and Linear Independence
[*] Bases and Dimension
[*] Maximal Linearly Independent Subsets
[/LIST]
[*] Linear Transformations and Matrices
[LIST]
[*] Linear Transformations, Null Spaces, and Ranges
[*] The Matrix Representation of a Linear Transformation
[*] Composition of Linear Transformations and Matrix Multiplication
[*] Invertibility and Isomorphisms
[*] The Change of Coordinate Matrix
[*] Dual Spaces
[*] Homogeneous Linear Differential Equations with Constant Coefficients
[/LIST]
[*] Elementary Matrix Operations and Systems of Linear Equations
[LIST]
[*] Elementary Matrix Operations and Elementary Matrices
[*] The Rank of a Matrix and Matrix Inverses
[*] Systems of Linear Equations - Theoretical Aspects
[*] Systems of Linear Equations - Computational Aspects
[/LIST]
[*] Determinants
[LIST]
[*] Determinants of Order [itex]2[/itex]
[*] Determinants of Order [itex]n[/itex]
[*] Properties of Determinants
[*] Summary - Important Facts about Determinants
[/LIST]
[*] Diagonalization
[LIST]
[*] Eigenvalues and Eigenvectors
[*] Diagonalizability
[*] Matrix Limits and Markov Chains
[*] Invariant Subspaces and the Cayley-Hamilton Theorem
[/LIST]
[*] Inner Product Spaces
[LIST]
[*] Inner Products and Norms
[*] The Gram-Schmidt Orthogonalization Process and Orthogonal Complements
[*] The Adjoint of a Linear Operator
[*] Normal and Self-Adjoint Operators
[*] Unitary and Orthogonal Operators and Their Matrices
[*] Orthogonal Projections and the Spectral Theorem
[*] Bilinear and Quadratic Forms
[*] Einstein's Special Theory of Relativity
[*] Conditioning and they Rayleigh Quotient
[*] The Geometry of Orthogonal Operators
[/LIST]
[*] Canonical Forms
[LIST]
[*] Generalized Eigenvectors
[*] Jordan Canonical Form
[*] The Minimal Polynomial
[*] Rational Canonical Form
[/LIST]
[*] Appendices
[LIST]
[*] Sets
[*] Functions
[*] Fields
[*] Complex Numbers
[*] Polynomials
[/LIST]
[*] Answers to Selected Exercises
[*] List of Frequently Used Symbols
[*] Index of Theorems
[*] Index
[/LIST]
Last edited by a moderator: