- #1
- 22,183
- 3,325
- Author: I.N. Herstein
- Title: Topics in Algebra
- Amazon Link: https://www.amazon.com/dp/0471010901/?tag=pfamazon01-20
- Prerequisities:
- Level: Grad
Table of Contents:
Code:
[LIST]
[*] Preliminary Notions
[LIST]
[*] Set Theory
[*] Mappings
[*] The Integers
[/LIST]
[*] Group Theory
[LIST]
[*] Definition of a Group
[*] Some Examples of Groups
[*] Some Preliminary Lemmas
[*] Subgroups
[*] A Counting Principle
[*] Normal Subgroups and Quotient Groups
[*] Homomorphisms
[*] Automorphisms
[*] Cayley's Theorem
[*] Permutation Groups
[*] Another Counting Principle
[*] Sylow's Theorem
[*] Direct Products
[*] Finite Abelian Groups
[/LIST]
[*] Ring Theory
[LIST]
[*] Definition and Examples of Rings
[*] Some Special Classes of Rings
[*] Homomorphisms
[*] Ideals and Quotient Rings
[*] More Ideals and Quotient Rings
[*] The Field of Quotients of an Integral Domain
[*] Euclidean Rings
[*] A Particular Euclidean Ring
[*] Polynomial Rings
[*] Polynomials over the Rational Field
[*] Polynomial Rings over Commutative Rings
[/LIST]
[*] Vector Spaces and Modules
[LIST]
[*] Elementary Basic Concepts
[*] Linear Independence and Bases
[*] Dual Spaces
[*] Inner Product Spaces
[*] Modules
[/LIST]
[*] Fields
[LIST]
[*] Extension Fields
[*] The Transcendence of e
[*] Roots of Polynomials
[*] Construction with Straightedge and Compass
[*] More About Roots
[*] The Elements of Galois Theory
[*] Solvability by Radicals
[*] Galois Groups over the Rationals
[/LIST]
[*] Linear Transformations
[LIST]
[*] The Algebra of Linear Transformations
[*] Characteristic Roots
[*] Matrices
[*] Canonical Forms: Triangular Form
[*] Canonical Forms: Nilpotent Transformations
[*] Canonical Forms: A Decomposition of V: Jordan Form
[*] Canonical Forms: Rational Canonical Form
[*] Trace and Transpose
[*] Determinants
[*] Hermitian, Unitary, and Normal Transformations
[*] Real Quadratic Forms
[/LIST]
[*] Selected Topics
[LIST]
[*] Finite Fields
[*] Wedderburn's Theorem on Finite Division Rings
[*] A Theorem of Frobenius
[*] Integral Quaternions and the Four-Square Theorem
[/LIST]
[/LIST]
Last edited by a moderator: