- #1
lukesfn
- 96
- 0
I assume people much more knowledgeable then me must have already thought this through, but the following line of thought has me very curious. I'm making a lot of intuitive leaps here though, so I am sure there is a lot of places I could have gone drastically wrong.
Hawking radiation is predicted to be observed from out side the event horizon of a black hole, however, I would expect somebody just inside the horizon to also observe something similar to hawking radiation. There will still be another event horizon between the observer and the center of the BH from from which out side of, information will be able to be sent back to the observer (although, obviously it can't move away from the center of the BH, it can just move slower towards the center then the observer does so that the observer catches up to it)
I would expect this would work similarly to what happens optically if you cross a BH horizon, you would still optically see the BH in front of you, although it would appear to wrap around you as you fall towards the center. So, I am expecting you would also continue to be able to observe some hawking like radiation as you fall all the way to the center.
If this is so, then it may get more interesting towards the center. I think the amount of hawking radiation is generally calculated via the mass of a black hole, but for an observed hawking like radiation inside at a radius inside the horizon, I would expect that it would have to be increase exponentially as the radius decreases since the curvature of space would increase.
Maybe I am confused, but it seems to me that the rate of increase of this radiation would tend towards infinity faster then an observer would be accelerated towards the center.
By this logic, I start to think that an observer should see everything in the BH evaporate before they could reach the singularity.
Following this logic further no particle should ever be able to reach a singularity, so is it possible for one to form?
It seems a little counter intuitive that a singularity couldn't form given that things would have to be moving out from the center at faster then the speed of light trough space tiem to stop a singularity from forming, but the mechanism of hawking radiation allows for FTL transfer of mass from the BH at the horizon, so could it not allow a trickle up effect from all the way from the center, especially considering the much higher stress on space time towards the center effectively causing space time too pull itself apart that much stronger.
Like I said, I assume many much more knowledgeable people have spent much more time then me pondering such things, but it does seem like such an elegant solution to many problems to my naive mind that I probably need somebody else to tell me why it isn't so.
Hawking radiation is predicted to be observed from out side the event horizon of a black hole, however, I would expect somebody just inside the horizon to also observe something similar to hawking radiation. There will still be another event horizon between the observer and the center of the BH from from which out side of, information will be able to be sent back to the observer (although, obviously it can't move away from the center of the BH, it can just move slower towards the center then the observer does so that the observer catches up to it)
I would expect this would work similarly to what happens optically if you cross a BH horizon, you would still optically see the BH in front of you, although it would appear to wrap around you as you fall towards the center. So, I am expecting you would also continue to be able to observe some hawking like radiation as you fall all the way to the center.
If this is so, then it may get more interesting towards the center. I think the amount of hawking radiation is generally calculated via the mass of a black hole, but for an observed hawking like radiation inside at a radius inside the horizon, I would expect that it would have to be increase exponentially as the radius decreases since the curvature of space would increase.
Maybe I am confused, but it seems to me that the rate of increase of this radiation would tend towards infinity faster then an observer would be accelerated towards the center.
By this logic, I start to think that an observer should see everything in the BH evaporate before they could reach the singularity.
Following this logic further no particle should ever be able to reach a singularity, so is it possible for one to form?
It seems a little counter intuitive that a singularity couldn't form given that things would have to be moving out from the center at faster then the speed of light trough space tiem to stop a singularity from forming, but the mechanism of hawking radiation allows for FTL transfer of mass from the BH at the horizon, so could it not allow a trickle up effect from all the way from the center, especially considering the much higher stress on space time towards the center effectively causing space time too pull itself apart that much stronger.
Like I said, I assume many much more knowledgeable people have spent much more time then me pondering such things, but it does seem like such an elegant solution to many problems to my naive mind that I probably need somebody else to tell me why it isn't so.