- #1
- 10,877
- 423
##\phi:\mathbb R^4\to\mathbb R^4## is a smooth function such that ##J_\phi(x)^T\eta J_\phi(x)=\eta##, where ##J_\phi(x)## is the Jacobian matrix of ##\phi## at x, and ##\eta## is defined by
$$\eta=\begin{pmatrix}-1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{pmatrix}.$$ I want to prove that there's a linear ##\Lambda:\mathbb R^4\to\mathbb R^4## and an ##a\in\mathbb R^4## such that ##\phi(x)=\Lambda x+a## for all ##x\in\mathbb R^4##.
Not sure what to do. An obvious idea is to consider the components of the matrix equation. I'm labeling rows and columns from 0 to 3 (because I'm trying to prove a theorem in special relativity), and I'm using the notation ##\phi^\mu{},_{\nu}## for the ##\nu##th partial derivative of the ##\mu##th component of ##\phi##. We have $$\phi^\mu{},_{\rho}(x) \eta_{\mu\nu} \phi^\nu{},_{\sigma}(x) = \eta_{\rho\sigma},$$ and therefore (now dropping the x from the notation)
\begin{align}
-1 &=\eta_{00}=-(\phi^0{},_{0})^2+(\phi^1{},_{0})^2 +(\phi^2{},_{0})^2 +(\phi^3{},_{0})^2\\
0 &=\eta_{01} = -\phi^0{},_{0} \phi^0{},_{1} +\phi^1{},_{0} \phi^1{},_{1}+\phi^2{},_{0} \phi^2{},_{1} +\phi^3{},_{0} \phi^3{},_{1}\\
&\vdots
\end{align}
$$\eta=\begin{pmatrix}-1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{pmatrix}.$$ I want to prove that there's a linear ##\Lambda:\mathbb R^4\to\mathbb R^4## and an ##a\in\mathbb R^4## such that ##\phi(x)=\Lambda x+a## for all ##x\in\mathbb R^4##.
Not sure what to do. An obvious idea is to consider the components of the matrix equation. I'm labeling rows and columns from 0 to 3 (because I'm trying to prove a theorem in special relativity), and I'm using the notation ##\phi^\mu{},_{\nu}## for the ##\nu##th partial derivative of the ##\mu##th component of ##\phi##. We have $$\phi^\mu{},_{\rho}(x) \eta_{\mu\nu} \phi^\nu{},_{\sigma}(x) = \eta_{\rho\sigma},$$ and therefore (now dropping the x from the notation)
\begin{align}
-1 &=\eta_{00}=-(\phi^0{},_{0})^2+(\phi^1{},_{0})^2 +(\phi^2{},_{0})^2 +(\phi^3{},_{0})^2\\
0 &=\eta_{01} = -\phi^0{},_{0} \phi^0{},_{1} +\phi^1{},_{0} \phi^1{},_{1}+\phi^2{},_{0} \phi^2{},_{1} +\phi^3{},_{0} \phi^3{},_{1}\\
&\vdots
\end{align}