- #1
turbo
Gold Member
- 3,165
- 56
http://arxiv.org/PS_cache/astro-ph/pdf/0502/0502385.pdf
Light should follow the same rules in distant environs as it does here. If not, the universe would look pretty strange. When we observe trends in the behavior of light, we should first explore the assumptions regarding the propagation of light in a "vacuum" before positing the existence of intervening materials, like "reddening dust", "iron fibers" (another weird but common one!) etc.
When light enters a denser propagating medium, it slows down, and when it encounters a less-dense medium, it speeds up. When it encounters a density transition that is not perpendicular to its direction of travel, it is bent. This is classical optics. Space is not empty, boys and girls. Space is a transmissive medium. That medium may not have boundaries as well-defined as those between the air/water surface of a swimming pool, but the properties of the transmissive media must be taken into account in any classical optical application, and we have not yet properly considered the role of the quantum vacuum as the transmissive medium (ether) through which EM propogates. If we are not willing to take this conceptual step, I believe that physics is going to be stalled for a very long time.
rant mode OFF
No kidding. Would anybody here like to hazard a guess at where this "reddening dust" lies on the path between the z~6 galaxies and our vantage point? If the "reddening dust" is very ancient and distant, I would be interested in hearing how it could have been formed in the low-metallicity environment predicted by the BB theory. If it is more local, is there a model explaining the preferential reddening of distant galaxies?Hence the galaxies SBM03#1 are already, to some ex-
tent, established systems. This is a significant finding since,
at z ≈ 6, the Universe is less than 1Gyr old.
Light should follow the same rules in distant environs as it does here. If not, the universe would look pretty strange. When we observe trends in the behavior of light, we should first explore the assumptions regarding the propagation of light in a "vacuum" before positing the existence of intervening materials, like "reddening dust", "iron fibers" (another weird but common one!) etc.
When light enters a denser propagating medium, it slows down, and when it encounters a less-dense medium, it speeds up. When it encounters a density transition that is not perpendicular to its direction of travel, it is bent. This is classical optics. Space is not empty, boys and girls. Space is a transmissive medium. That medium may not have boundaries as well-defined as those between the air/water surface of a swimming pool, but the properties of the transmissive media must be taken into account in any classical optical application, and we have not yet properly considered the role of the quantum vacuum as the transmissive medium (ether) through which EM propogates. If we are not willing to take this conceptual step, I believe that physics is going to be stalled for a very long time.
rant mode OFF
Last edited by a moderator: