What is Acceleration: Definition and 1000 Discussions

In mechanics, acceleration is the rate of change of the velocity of an object with respect to time.
Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the orientation of the net force acting on that object. The magnitude of an object's acceleration, as described by Newton's Second Law, is the combined effect of two causes:

the net balance of all external forces acting onto that object — magnitude is directly proportional to this net resulting force;
that object's mass, depending on the materials out of which it is made — magnitude is inversely proportional to the object's mass.The SI unit for acceleration is metre per second squared (m⋅s−2,






m

s

2







{\displaystyle {\tfrac {\operatorname {m} }{\operatorname {s} ^{2}}}}
).
For example, when a vehicle starts from a standstill (zero velocity, in an inertial frame of reference) and travels in a straight line at increasing speeds, it is accelerating in the direction of travel. If the vehicle turns, an acceleration occurs toward the new direction and changes its motion vector. The acceleration of the vehicle in its current direction of motion is called a linear (or tangential during circular motions) acceleration, the reaction to which the passengers on board experience as a force pushing them back into their seats. When changing direction, the effecting acceleration is called radial (or orthogonal during circular motions) acceleration, the reaction to which the passengers experience as a centrifugal force. If the speed of the vehicle decreases, this is an acceleration in the opposite direction and mathematically a negative, sometimes called deceleration, and passengers experience the reaction to deceleration as an inertial force pushing them forward. Such negative accelerations are often achieved by retrorocket burning in spacecraft. Both acceleration and deceleration are treated the same, they are both changes in velocity. Each of these accelerations (tangential, radial, deceleration) is felt by passengers until their relative (differential) velocity are neutralized in reference to the vehicle.

View More On Wikipedia.org
  1. danut

    Tension in a string which connects 3 pulleys

    I'm struggling to get to the correct answer, which I posted down bellow. The pulleys are ideal, so I figured that m₁ and m₂ will both move upwards (towards the ceiling?) with the acceleration a, while m₃ will move downwards with the acceleration -a. Let T be the tension in the string which...
  2. Heisenberg7

    Find the change in the time required, if acceleration increases by da

    According to the problem statement: $$a = \frac{dv}{dt} = const \implies dt = \frac{dv}{a} \implies \int_{0}^{T} \,dt = \frac{1}{a} \int_{0}^{v_f} \,dv \implies T = \frac{v_f}{a}$$ Now, the distance covered is given by, $$L = \int_{0}^{T} v \,dt \implies L = \frac{1}{a} \int_{0}^{v_f} v \,dv...
  3. I_Try_Math

    Analyzing acceleration of block on a ramp connected to a pulley

    Initially I thought a good strategy for solving the problem would be to find the torque on the pulley to get alpha (angular acceleration) and then use alpha to find the tangential acceleration of the pulley which is equal to the block's acceleration. I'm not sure if this is correct. Let ##...
  4. cianfa72

    I Fermi-Walker transport of proper acceleration along timelike congruence

    Hi, starting from a recent thread in this section, I decided to start a new thread about the following: Take a generic irrotational/zero vorticity timelike congruence. Do the 4-velocity and the direction of proper acceleration (i.e. the vector in that direction at each point with norm 1)...
  5. I

    B The inverse-square law: Gravitational force on two falling marbles

    Imagine making a hole in the ground, about a mile deep, with a large and square diameter. In the middle of the hole, there is a hollow and narrow tube with all air sucked out. Next to one of the walls, so close that it's touching, there is another hollow tube without air inside. Two identical...
  6. T

    Ball launched from a height of 5 meters --- Projectile motion

    I conceptually know how to solve this problem, what I struggle with is the direction of the acceleration. For example to solve the first question I need to find the horizontal displacement when the ball hits the ground. Therefore ##l_0= x(t_1)= x_0 + v_0 t_1##, where ##t_1## is the moment the...
  7. T

    Stretched spring attached to the center of a pure rolling disk

    I need to determine: 1) The initial acceleration of the disk 2) the speed of the disk when the spring reaches minimum displacement For point one I think I should use the free body diagram and then ##\Sigma F = ma##, I'm taking as positive the right and the upward directions and the counter...
  8. T

    Dynamics of a Block on top of a slab with friction between them

    I need to determine: 1) The accelerations of both the slab and the block, the moment right after the spring was released. => I can consider Fspring as a constant force. Both bodies can be considered as points of mass. I'm taking as positive the left direction. I've analyzed both objects using...
  9. chwala

    Find the magnitude of the child's acceleration

    In my working i have; For a) ##\tan 55^{\circ} = \dfrac{450}{R}## ##R = \dfrac{450}{\tan 55^{\circ} }= 315 N## part b) no problem here ...horizontal to left. c) This is where my real doubt is, i have using sine rule; ##\dfrac{9.8}{sin 55^{\circ} }= \dfrac{a}{sin 35^{\circ}}## ##a =...
  10. I

    B Formation of a black hole using acceleration

    Here is my question Imagine if you had an object, this object is then accelerated. The process of acceleration bends space-time. For a black hole to form there must be extreme curvature of spacetime. Therefore, accelerating an object at such a high rate could create a black hole. I am not...
  11. Z

    B Question About Dark Energy

    When there is an explosion, matter flies off in every direction. At first it is static, and then it accelerates, and keeps accelerating, until friction slows it down to a stop. In a vacuum would this matter continue to accelerate indefinitely? And could this be the cause of the continued...
  12. U

    AC gaussmeter in static magnetic field

    When you shake back and forth AC gaussmeter ,he significantly increase reading(magnetic field), because device is moved in Earth static magnetic field. Does his acceleration or velocity cause increase in reading and why he even increase reading if magnetic field from Earth is static and...
  13. P

    Kinematics: Acceleration of a figure skater changing direction

    My guess was simply that as acceleration changes from the north to east direction, the total magnitude change of v is ##v \sqrt 2##. Acceleration is ##\mu g##, so time would be ##\frac {v \sqrt 2} {\mu g}##. This agrees with the textbook solution. What I do not understand is the trajectory...
  14. A

    I Question Regarding Force Being Equal, Even Moving Upwards (if V=0)?

    I understand based on the equation F = ma that if there is no acceleration, the forces on the object all balance out to 0 in all directions. What I don't get is for example, slowly lowering a heavy stone slab at a constant velocity v, and raising it way above my head as high as I can at a...
  15. Owen Ploe

    Need help, to help, a friend with their HW (High School)

    This is the problem set. I am stuck from this point... If anyone could give me a hand I would really appreciate it. I know this is probably really simple, but I don't know any of this and have been trying my best with youtube, and other peoples posts. PS this is for high school
  16. tharindu_

    B Why don't cars accelerate according to F = ma?

    If the engine is constant, then the wheels of the car exerts a constant force on the floor. And F = ma, So the car should be accelerating rather than maintaining the same speed. What is going on here?
  17. Gargi

    Query related to Two-Dimensional Motion

    My initial approach to this question was breaking the components of acceleration in the x and y axes and applying the three equations of motion to find the final velocity as well as the final position. As we were expected to find the net final velocity of the particle, I found the resultant of...
  18. KukyZ

    How Much Vertical Acceleration Does a Jet Need to Avoid a Hill?

    The answer should be 10 m/s^2 but I don't know how to solve it
  19. M

    Friction - same direction as motion?

    Doesn't friction always oppose the motion? From the clockwise rotation here, shouldn't the cylinder be moving to the right? so why are the acceleration and friction in the same direction to the right, and in the same direction as the motion? (attached image for reference)
  20. Sam Jelly

    Center of mass acceleration for an inclined plane and mass m

    Why is the center of mass acceleration zero? Did I do anything wrong?
  21. hello478

    Arrow being fired to centre of target

    i solved it like this... s = ut + 1/2 at^2 t= 1.08 (from part a) u= 65 sin4.30 a= 9.81? or -9.81 the answer said -9.81 why? wouldn't acceleration change from -9.81 to +9.81 because it moves up then down??? its soo confusing...
  22. amandela

    Rolling Motion (Stone Gets Stuck in a Tire Going Forward)

    So I thought the stone would initially experience acceleration in the backward (leftward) direction then continually accelerate in the inward direction of the tire (i.e. upward then rightward then downward then leftward, etc.) as the tire moves forward. But the answer is immediately upward...
  23. MatinSAR

    If a rope is in free fall, does tension force act on it or not?

    This is the question. To this point everything is clear. I have problem with following part: The authors claim that each part of the remaining rope is under constant acceleration. So it is in free fall and only gravitional force acts on it. If we release a rope like above, before it hits the...
  24. I

    POWER - different approach, different results

    Basically, I tried to find the solution by calculating P=Fs/t, where F= 2250 and s is the distance traveled in the 12th second and that result differs from the result I get when I calculate the power using P=Fv. ##F=ma=1500*1.5=2250N## ##s_{12}-s_{11}=...
  25. amandela

    Work Done and Acceleration (Mistaken Answers?)

    So for Q1, I answered down (towards Earth) but the solution says there is no acceleration there. For Q2, I answered mgh, but the solution says it's mgh/t, which is power, right? I just want to make sure I'm not super confused. Thank you.
  26. amandela

    Instantaneous Acceleration Given Equation for Velocity

    This is from an old exam. The velocity of a particle moving along a straight line is v = 4 + 0.5 t. What is the instantaneous acceleration at t=2? The solution is supposedly 2 because a = dv/dt = t. But I thought dv/dt here would be 0.5. What am I missing? Thanks.
  27. P

    I Coriolis effect and the acceleration experienced in a rotating frame

    Is the reason behind coriolis acceleration is that as you move far from the centre of a rotating frame the tangential velocity increases?
  28. chwala

    Calculate acceleration and speed of block

    Pretty straight forward, ...reason of posting is to check why i am having a negative value for ##a##. From my study, i know that ##R(||)## to plane ##F - 40 \cos \dfrac{π}{3} = 4a## ##a = -5 m/s^2## or can i as well have the equation ( friction and tension are at equilibrium) as, ##40...
  29. S

    Having a hard time learning Newton's 2nd law

    I'm taking college physics without calculus this semester and it's been quite the challenge to say the least. We recently covered free body diagrams and while I understand the different vectors in the FBD, making calculations is killing me. Specifically Newton's 2nd law. The problems range...
  30. SSJBLOOD

    Find the coefficient of friction and acceleration with masses given

    I tried to use the energy route but the acceleration was not a plausible one. It was just way too big.
  31. cianfa72

    I Invariant definition of acceleration in Newtonian physics vs proper acceleration in GR

    Does it exist an invariant way to define acceleration in Newton physics like the proper acceleration in GR ? In Newton physics if an accelerometer attached to an object reads 0 it does not mean it is actually not accelerating (since gravity is a force). To define inertial motion the concept of...
  32. I

    I What Happens When an Object Accelerating Away from a Black Hole Stops?

    First of all, I wish everyone a Happy New Year. I am interested in your expertise on a special constellation, which I will first briefly describe. If you observe an object that is approaching the event horizon of a black hole, it is said that at some point the distant observer will have the...
  33. M

    Tangential acceleration of proton due to a changing magnetic field

    ##\displaystyle R=\frac{mv}{qB}\implies v=\frac{RqB}{m}## where ##v## is the speed of the proton ##\displaystyle\frac{dv}{dt}=\frac{Rq}{m}\frac{dB}{dt}## On substituting the values, I get ##\displaystyle\frac{dv}{dt}=9.58\times 10^4\ m/s^2## This answer, however, is incorrect. Where have I...
  34. brotherbobby

    B Kinematic equations ##\textbf{purely}## from graphs

    1. The first equation between velocity ##v## and time ##t## can be derived using the graph I have drawn for the purpose as shown on the right. Since acceleration ##a_0## is a constant, the graph of ##v-t## is a straight line. The slope of the line is ##\dfrac{v-v_0}{t} = a_0\Rightarrow \boxed{v...
  35. MatinSAR

    Pushing a block against the wall of an elevator that is accelerating

    Easier case: Elevator is at rest. We need to prevent box from free fall so friction should be bigger than "mg".(And they can be equal) When we push with force F we know that the maximum static friction is ##u_sF##. "mg" should be smaller than ##u_sF## or should be equal to it so the minimum...
  36. L

    Inner product between velocity and acceleration is zero (parametric)

    Hi, I am having problems with task b I then defined the velocity vector and the acceleration vector as follows ##dot{\textbf{r}}'(t) = \frac{1}{||\dot{\textbf{r}}(t)||} \left(\begin{array}{c} \dot{r_1}(t) \\ \dot{r_2}(t) \end{array}\right)## and ##ddot{\textbf{r}}'(t) =...
  37. E

    Pearson HW23, The Little Prince

    A. Correct answer is radius = 1770m, acceleration = 2.73*10^-3m/s. B. I don't know how to approach this problem. I don't know if I should start with forces, energy, or basic kinematics.
  38. M

    How would we define a value for acceleration if only the direction is changing?

    How would we define a value for acceleration if only the direction is changing and not the speed?
  39. J

    B Elevator Question -- What does a downward acceleration mean?

    If an elevator is moving upward, what does a downward acceleration mean? When applying the free body diagram, will the positive direction be upwards since the elevator is moving up?
  40. P

    B Clock synchronising by clock transport?

    I have a reference system A with three clocks of the same type. Two clocks are at rest in the origin of A and could be synchronized without any problems. The third clock rests at a distance in the x-direction. Is it possible to synchronize this third clock by accelerating the second clock at...
  41. Lotto

    Movement of the water level in the barrel - calculate its velocity, etc.

    Here is only my solution: ##A_1 \frac{\mathrm d h}{\mathrm d t}=-A_2\sqrt{2hg}##, so by integrating we get ##h(t)=\left(\sqrt{h_0}-\frac{A_2}{2A_1}\sqrt{2g} t\right)^2.## Setting ##h(T)=0## we get ##T=\frac{A_1}{A_2}\sqrt{\frac{2h_0}{g}}.## By doing the first time derivative of ##h## we...
  42. I

    Why Does the Force Meter Show Different Readings in Similar Situations?

    I don't get how is the 4th case different from the 1st case? In both cases the weights are hanging and are not accelerating, but somehow in 4th case the force meter shows 0N while in 1st shows 10N. All other meters show 10N but the last one. Now, I don't know hot to solve last one. I tried...
  43. K

    I Acceleration in Newton's second law

    Hi, I was looking over one of the sample examples in Halliday and Resnick, the one about the scale in the elevator. There is something that bugs me about it, and I'd like to know if you agree. The example has to do with finding the reading of a scale that is measuring someone's weight in a...
  44. James1019

    Projectile motion only provided acceleration diatance

    TL;DR Summary: Find initial vertically upward speed of the ball Find horizontal speed of the speed Find angle How to: Find initial vertically upward speed of the ball Find horizontal speed of the speed Find anglei try to solve it but it didn't work
  45. chwala

    Show that acceleration varies as cube of the distance given

    In my approach i have distance as ##(x)## and velocity as ##(x^{'})##, then, ##(x^{'}) = kx^2## where ##k## is a constant, then acceleration is given by, ##(x^{''}) = 2k(x) (x^{'})## ##(x^{''}) = 2k(x)(kx^2) ## ##(x^{''}) = 2k^2x^3##. Correct?
  46. Astro-Eddie

    B Where does the 1/2 in 1/2 at^2 come from?

    I am currently studying Newton's laws and mechanics. I have this question: Why is distance=half a*t^2? Where did the 1/2 come from? Can someone explain this without using calculus?
  47. Strato Incendus

    Writing: Input Wanted Turning an interstellar ship around before reaching coasting speed?

    This is a follow-up question emerging from another thread in the Sci-Fi Writing and World Building forum. Specifically, @DaveC426913 had criticised another book in which the plot is set in motion by a plan to turn an interstellar colony ship around and return back home. In my setting, a similar...
  48. yashboi123

    Why is there no acceleration in the southern/y direction?

    The correct answer is obtained by rearranging Δ x/ Δt = v. However, I assumed there would be some acceleration in the y direction so I tried to use the kinematic equations. To find the time I simply rearranged Δ x/ Δt = v, assigning v=5.2 m/s and Δ x = 650. I assumed there is no acceleration in...
Back
Top