Here is my question :
In the intensity distribution diagram the Area represents total energy radiated per second per square meter as the y axis represents intensity and x axis represents wavelength, than does it mean wavelength × intensity = energy radiated per second per square meter?
If the universe keeps expanding at an accelerated rate (given by the cosmological constant) then the universe would approach a DeSitter spacetime where there would be a cosmological horizon that would radiate just as the event horizon of a black hole radiates Hawking radiation
I thought that...
From my knowledge, the optical pyrometer determines temperature of a body based on the visible part of the heat radiation spectrum emitted by a body. Now the iron piece was red hot inside the furnace as well as outside the furnace, so it is emitting heat radiation in the visible part both while...
The image above is the solution posted by the book. I can follow the reasoning that has been used, but i have a trouble particularly at the first equation itself.
Why should $$n = 2 \rho / m_{H} $$ instead of $$n = \rho / (2m_{H})$$, since the mass os a molecule of hydrogen is two times the...
Homework Statement:: Sand is rough and black so it is a good absorber and radiator of heat depending on temperature.
During the day, sand's radiation of the sun's energy superheats the air and causes temperatures to soar. But, at night most of the heat in the sand quickly radiates into the air...
My book says that emission spectra are produced when an electron in excited state jump from excited to lower energy states. It also states that solids and liquids produce continuous spectra and it depends upon temperature only (is this black body radiation?).
I know, Electrons around a nucleus...
I have questions about Black body radiation. see the attached image
1). It explains that the Spectral radiance measurement of 7000K temperature is the same as both 300 and 520 nm wavelength light.
See here both A and B shows 60.
Is my understanding correct?
2). Is spectral radiance the number...
Hi
I am currently taking a physics course and studying black body radiation.I have already seen a good number of books , but I have a lot of unanswered questions.
-What does the black body radiation, which is approximately the radiation of the sun, has to do with standing waves inside a cavity...
I don't understand how this can be solved.
The official solution was:
F=\sigma*T^4
E=F*4\pi R^2*60*60
This doesn't make sense to me, as it seems to imply that the energy that the black body radiates depends on the radius of the shell. For a very large shell the body will reflect...
Black body radiation formula contains power and exponential terms. Electric discharge in a gas results in the ion acceleration; the ion distribution comprises power and exponential terms too.
Any connection between these two phenomena (i.e. black body and potential) could be established?
I am really stuck at this question, i would appreciate any tips you have. I already try to goes with series but the calculation is getting harder and tiring, so probably this is not the right way.
I've come across this alternative formulation of Planck's Law which links the number density to energy gap
n(E) = \frac{2\pi}{c^2 h^3} \frac{E^2}{exp\big(\frac{E-\mu}{k_BT})-1}
I've tried visualising this relation and I imagine it will look similar to the spectral density relation but I'm just...
I was looking at Kirchoffs Laws:
"A solid, liquid or dense gas produces a continuous spectrum".
I would expect objects to produce an emission spectrum since we would be observing the photons that come from spontaneous emission of electrons in excited states. This photons are specific to the...
I think the answer for this may be straightforward, but I don't see anywhere that explains this from the scratch:
A large resonant cavity with a small hole is used to approximate an ideal black body.
I understand the conditions for the modes inside the cavity. But there are two points that...
I am quite confused, as I start this question. I can easily find the following when searching up Planck's law:
However, this is not u. My prof is quite unclear and sometimes chooses his own variables as he sees fit, so i am not sure if this would be equivalent to what he is looking for u(λ)dλ...
The following are 3 equations of Planck's law or Planck's distribution function. Are they all correct? How do they derive from each other?
Equation One:
From page 512 of http://metronu.ulb.ac.be/npauly/art_2014_2015/shockley_1961.pdf
We denote by Qs the number of quanta of frequency greater...
Homework Statement
A spherical body is enclosed in a spherical chamber which acts like a perfectly black body. The reflectance of the body is 0.4 and transmittance is negligible, the temperature of the body and surrounding temperature is constant at T Kelvin. The total power that comes out of...
How can I find the relation between the radiance and the energy density of a black body? According to Planck's law, the energy density inside a blackbody cavity for modes with frequency ##\nu \in [\nu, \nu + \mathrm{d}\nu]## is given by $$ \rho(\nu, T)\mathrm{d}\nu =...
I’m trying to understand how a solid body changes the wavelength of radiation it re-radiates from that which it originally absorbed. I’m thinking in context to the way that the Earth absorbs higher frequency radiation from the sun, but when it re-emits the energy it’s at a much lower frequency...
hi all,
This isn't simply physics but is very much related. I'm trying to make an infrared thermometer or some means of remote temperature measurements for temperatures from 0 degree C to around 400 degree C
I started with looking up low cost silicon photo diodes / photo transistors e.g. on...
I am looking for calculating color temperature in the IR/Microwave scale frequencies, for room temperature, 273K, 263K, 253K, all google is showing is about visible light and about display systems.
Homework Statement
2. Consider a metal sphere of radius R and heat capacity C, initially at a temperature To which is much hotter than the background temperature.
a) Derive an analytical result for the temperature of such a sphere as a function of time. Clearly state any simplifying...
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/
All copyright reserved to Prof. Harbola and NPTEL, Govt. of India. Duplication punishable offence.
Course Website: http://www.nptel.ac.in/courses/115104096/