In mathematical logic and metalogic, a formal system is called complete with respect to a particular property if every formula having the property can be derived using that system, i.e. is one of its theorems; otherwise the system is said to be incomplete.
The term "complete" is also used without qualification, with differing meanings depending on the context, mostly referring to the property of semantical validity. Intuitively, a system is called complete in this particular sense, if it can derive every formula that is true.
A measure space ##(X,\mathcal M,\mu)## is complete iff $$S\subset N\in\mathcal M\text{ and }\mu(N)=0\implies S\in\mathcal M.$$The meaning of a complete measure is a measure whose domain includes all subsets of null sets.
Suppose now ##\mu## is complete. Under what conditions is ##\nu## also...