Derivative calculus Definition and 13 Threads

  1. Clockclocle

    I An actual meaning of instantaneous velocity

    After a year of thinking about instantaneous velocity. I think that this notion is no more than a mathematic coincidence when mathematician tried to find the tangent of curve. The only definition of velocity that make sense is ##\frac{\Delta x}{\Delta t}##, this proportion is a quantity that...
  2. karush

    Dx/x of quotient by def of derivative

    $f(x)=\dfrac{x^2-1}{2x-3}$ ok I just don't see any preview so don't want to add more...
  3. Strand9202

    Derivative of the square root of the function f(x squared)

    I started out by rewriting the function as (f(x^2))^(1/2). I then did chain rule to get 1/2(f(x^2))^(-1/2) *(f'(x^2). - I think I need to go further because it is an x^2 in the function, but not sure.
  4. T

    Determine for which x the derivative exists for $$f(x)=arcsin(\sqrt x)$$

    Hi there. I have the following function: $$f(x)=arcsin(\sqrt x)$$ I've caculated the derivative to: $$f'(x)=\frac{1}{2\sqrt x\sqrt{ (1-x}}$$ And the domain of f(x) to: $$[0, 1]$$ And the domain of f'(x) to: $$(0, 1)$$ I want to determine for which x the derivative exists but I'm not...
  5. J

    A Liouville's theorem and time evolution of ensemble average

    With the Liouville's theorem $$\frac{{d\rho }}{{dt}} = \frac{{\partial \rho }}{{\partial t}} + \sum\limits_{a = 1}^{3N} {(\frac{{\partial \rho }}{{\partial {p_a}}}\frac{{d{p_a}}}{{dt}} + \frac{{\partial \rho }}{{\partial {q_a}}}\frac{{d{q_a}}}{{dt}})} = 0$$ when we calculate the time evolution...
  6. IonizingJai

    Implicit differentiation problem

    Homework Statement If ##x\sqrt{1+y} + y\sqrt{1+x } = 0##, then prove that ##\frac {dy} {dx} = \frac {-1}{(x-1)^2}##. 2.Relevant Equations: $$ \frac {dy} {dx} = - \frac {\left (\frac {\partial f}{\partial x} \right)} {\left( \frac {\partial f} {\partial y} \right)}.$$ 3...
  7. M

    Pick a,b,c,d for y=ax^3+bx^2+cx+d that models path of plane.

    Homework Statement A plane starts its descent from height ##y =h## at ##x = -L## to land at ##(0,0)##. Choose ##a, b, c, d## so its landing path ##y =ax^3 + bx^2 + cx + d## is "smooth". With ##\frac{\mathrm {d}x}{\mathrm {d}t} = V =##constant, find ##\frac{\mathrm {d}y}{\mathrm {d}t}## and...
  8. G

    How can I calculate the derivative of this function?

    Homework Statement Let f(x) be the function whose graph is shown below (I'll upload the image) Determine f'(a) for a = 1,2,4,7. f'(1) = f'(2) = f'(4) = f'(7) = Use one decimal. Homework Equations f(x+h)-f(x)/h The Attempt at a Solution Hi everybody I was trying to do this function...
  9. A

    B Quick question about calculus (derivatives)

    I thought Differentiation is all about understanding it in a graph. Every time I solve a question on differentiation I visualise it as a graph so it's more logical. After all, that IS what the whole topic is about, right? Or am I just wrong? But when you look at these questions...
  10. DavideGenoa

    I Differentiation under the integral in retarded potentials

    Hello, friends! I know, thanks to @Hawkeye18 who proved this identity to me, that, if ##\phi:V\to\mathbb{R}## is a bounded measurable function defined on the bounded measurable domain ##V\subset\mathbb{R}^3##, then, for any ##k\in\{1,2,3\}##, $$\frac{\partial}{\partial r_k}\int_V...
  11. M

    Master equation -> diffusion equation

    Homework Statement I am trying to understand the derivation of the diffusion equation from the Master equation for a 1D chain. We have an endless 1D discrete chain. State from ##n## can jump to ##n+1## and ##n-1## with equal probabilities. The distance between chain links is ##a##. Homework...
  12. JERRY-thechuha

    How to solve this partial derivative which includes a summation?

    I was reading a research paper, and I got stuck at this partial differentiation. Please check the image which I have uploaded. Now, I got stuck at Equation (13). How partial derivative was done, where does summation gone? Is it ok to do derivative wrt Pi where summation also includes Pi...
  13. Zeeprime

    I What Is the Formula for the Position of a Mass Falling Towards a Planet?

    Question: Finding the closed formula s(t) that gives the approaching position of an inertial mass to a planet Supposing the mass initially stationary, and far enough and for long enough that it is NOT possible to consider the gravity as constant while it moves closer and closer. Said in a...
Back
Top