Hello
I have some doubts about the relationship between the probability of occupying an electronic state defined by the Fermi Dirac distribution and the relationship to the number N of free electrons in a solid of N atoms.
In particular I refer to the Section 2.2 of Solid State Physics...
I`m sorry if this seems too obvious, just trying to clarify something. When Fermi-Dirac distribution is equal to zero , can we assume it is the state of
the highest energy? (Because the propability of occupation is zero)
The limit itself is pretty easy to calculate
##lim_{T->0} \ lim_{\mu->\epsilon_F} \ (e^{\frac{(\epsilon_F - \mu)}{kT}}+1)^{-1} = \frac{1}{2}##
But I'm very confused about changing ##\epsilon_\vec{k}## to ##\epsilon_F##. Why do we do this?
Good Day :
i reached the page 40 of Ashcroft Mermin book and after the equation 2.38 there is this expression of E(a,N) which is equal to Helmoltez Free energy F = U - TS , how this two terms F , E are related ? anyone can provide adequate explanation , and few useful references
Best...
Fermi-Dirac distribution function is given by
f(E)=(1)/(Aexp{E/k_{B}T}+1)
here A is the normalization constant? How we can get A?
E is the energy, k_{B} is the Boltzmann constant and T is the temperature.
thank you
Hi everybody, I was doing one asignment form class, I was tasked to prove that in one system, the arimetic mean of FD and BE distributions is equal to MB's distribution for undishtingable particles.
After doing the numbers I found out that it actually was, but I don't know why this happens, can...
hi guys, I wonder if I have fully understood the Fermi Dirac statistics properly, but I have a question on it regarding its application in the white dwarf research. I read the Fermi energy is applicable for T=0, now if the core of a white dwarf is too hot then how can we apply the Fermi Dirac...
Hello
Homework Statement
From the expression of the partition function of a fermi dirac ideal gas
ln(Z)=αN + ∑ ln(1+exp(-α-βEr))
show that
S= k ∑ [ <nr>ln(<nr>)+(1-<nr>)ln(1-<nr>)
Homework Equations
S=k( lnZ+β<E>)
<nr>=-1/β ∂ln(Z)/∂Er
<E>=-∂ln(Z)/∂β
The Attempt at a Solution
I...
Hello!
I have a small question, and I am not sure if I am missing something:
Today I glanced at the wikipedia page for Pions, and saw this: Statistics: Bosonic
Can anyone explain to me why a quark paired with a anti-quark obey Bose-Einstein Statistics? If quarks obey Fermi-Dirac statistics...
Studying the free electron model I found the fermi dirac distribution and the book told me that when T->0 we have that the fermi energy is equal to the chemical potential... why?
I have a question that is puzzling me as always...The Fermi-Dirac distribution function is (at T=0):
f\epsilon=\frac{1}{e^{\beta(\epsilon-\epsilon_{F})}+1} and we know that we can subsitute f\epsilon by 1 for \epsilon< \epsilon_{F} and 0 otherwise. However what is f(-\epsilon)? The answer is...
[SOLVED] Fermi Dirac- missing something from Ashcroft derivation
Homework Statement
Deriving Fermi Dirac function
following ashcroft all good up to equation 2.43 but then it does the folowing at 2.44
and I can't see how you reach 2.44.
Homework Equations
as
(2.43) f_{i}^{N}= 1-...
I have a homework problem that asks me to interpret the two curves for when the Fermi level (Ef) is 0.25 eV. I ploted the two graphs and both of them look nothing alike when E < Ef. But both plots predict a probability of essentially zero when E > Ef. I was wondering why is there such a large...