I have solved c), but don’t know how to solve the integral in d.
It looks like an integral to get c_n (photo below), but I still can’t figure out what to make of c) in the integral of d).
I also thought maybe you can rewrite c) into an initial wave function (photo below) with A,x,a but don’t...
Just earlier today i was practicing solving some ODEs with the power series method and when i did it to the infinite square well i noticed that my final answer for ##\psi(x)## wouldn't give me the quantised energies. My solution was
$$\psi(x) = \sum^{\infty}_{n=0} k^{2n}(\cos(x) + \sin(x))$$...
I am trying to numerically solve (with Mathematica) a relativistic version of infinite square well with an oscillating wall using Klein-Gordon equation. Firstly, I transform my spatial coordinate ## x \to y = \frac{x}{L[t]} ## to make the wall look static (this transformation is used a lot in...
After watching this video: which explains why the wavefunction in an infinite square well is flattened, I tried running the calculation in both, what seems, the more more traditional way of using sin and by the method of, what seems to be, adding the wavefunction and its complex conjugate...
I took the w derivative of the wave function and got the following. Also w is a function of time, I just didn't notate it for brevity:
$$-\frac{\sqrt{2}n\pi x}{w^{3/2}}cos(\frac{n\pi}{w}x) - \frac{1}{\sqrt{2w^3}}sin^2(\frac{n\pi}{w}x)$$
Then I multiplied the complex conjugate of the wave...
Obviously a particle inside an ISW of width L cannot have arbitrarily precise momentum because ΔP ≥ ℏ/2ΔX ≥ ℏ/2L. Therefore you cannot have a particle with arbitrarily low momentum, since that would require ΔP be arbitrarily small.
I need to show that a photon inside an ISW cannot have...
Here are the results from the python code:
Odd results:
Even results:
I tried to solve for energy using the equation:
I substituted the value for a as 4, as in the code the limit goes from -a to a, rather then 0 to a, and hence in the code a = 2, but for the equation it would equal to 4...
Hi,
I think I'm having a bit of a brain fart...I'm messing with this numerical code trying to understand the 1-D time-independent Schrodinger's equation infinite square well problem (V(x) infinite at the boundaries, 0 everywhere else). If normalized Phi squared is the probability of finding...
Hi, so I'm having trouble with a homework problem where it asks me to find the number of states with an energy less than some given E.
From this, I was able to work out the energy E to be
$$
E = \frac{\hbar^2}{2m} \frac{\pi^2}{a^2} \left(
n_x^2 + n_y^2 + n_z^2
\right)
$$
and...
Some questions:
Why is this even a valid wave function? I thought that a wave function had to approach zero as x goes to +/- infinity in all of space. Unless all of space just means the bounds of the square well.
Since we have no complex components. I am guessing that the ##\psi *=\psi##.
If...
A particle of mass m is in the ground state on the infinite square well. Suddenly the well expends to twice it's original size (x going from 0 to a, to 0 to 2a) leaving the wave function monetarily undisturbed.
On answering, for ##\Psi_{n}## I got ##\Psi_{n}## = ##\sqrt{\frac{1}{a}}...
Attempt: I'm sure I know how to do this the long way using the definition of stationary states(##\psi_n(x)=\sqrt{\frac {2} {a}} ~~ sin(\frac {n\pi x} {a})## and ##\int_0^{{a/2}} {\frac {2} {a}}(1/5)\left[~ \left(2sin(\frac {\pi x} {a})+i~ sin(\frac {3\pi x} {a})\right)\left( 2sin(\frac {\pi x}...
Hi everyone!
This is the first time I'm posting on any forum and I'm still rather unsure of how to format so I'm sorry if it seems wonky. I'll try my best to keep the important stuff consistent!
I am working on infinite square well problems, and in the example problem:
V(x) = 0 if: 0 ≤ x ≤ a...
I have always seen this problem formulated in a well that goes from 0 to L
I am confused how to use this boundary, as well as unsure of what a dimensionless hamiltonian is.
This is as far as I have gotten
The problem is:
Solve the time independent Schrodinger Equation for infinite square well centered at origin. Show that the energy is same as in the original case(well between x=0 and x=L). Also show that the solution to the this case can be obtained by setting x to x-L/2 in ##\psi## in the...
Homework Statement
Construct the four lowest-energy configurations for particles of spin-##\frac{1}{2}## in the infinite square well, and specify their energies and their degeneracies. Suggestion: use the notation ##\psi_{n_1,n_2}(x_1, x_2) |s,m>##. The notation is defined in the textbook...
Homework Statement
My doubts are on c)
Homework Equations
$$< H > = \int \Psi^* \hat H \Psi dx = \frac{2}{a} \int_{0}^{a} sin (x\frac{\pi}{a}) \hat H sin (x\frac{\pi}{a}) dx$$
The Attempt at a Solution
I understand that mathematically the following equation yields (which is the right...
For this problem at t=0
Ψ(x,0)=Ψ1-Ψ3
Where Ψ1 and Ψ3are the normalised eigenstates corresponding to energy level 1 and 3 of the infinite square well potential.
Now for it's time evolution it will be Ψ1exp(-iE1t/ħ)- Ψ3exp(-iE3t/ħ)
And taking the time given in the question the time part of the...
Homework Statement
Homework Equations
For this question my ans. is coming option (3) since the time part of the wave comes out to be same for both the energy states which is (-1)^(-1/8) and (-1)^(-9/8) respectively (using exp(-iEt/ħ)).
But the correct option is given option (4).
Am I right...
Homework Statement
A particle of mass m is moving in an infinite square well of width a. It has the following normalised energy eigenfunctions:
$$u_n (x) = \sqrt{\frac{2}{a}} sin(\frac{n \pi x}{a})$$ (1)
a) Give an expression that relates two orthogonal eigenfunctions to each other and use it...
Hello! I am trying to write a program that solves the Schrodinger Equation for a particle in an infinite square well. I did a lot of research regarding the methods that could be used to accomplish this. I am writing this program in Matlab. The method I am using is called the Shooting Method. In...
Homework Statement
At t < 0 we have an unperturbed infinite square well. At 0 < t < T, a small perturbation is added to the potential: V(x) + V'(x), where V'(x) is the perturbation. At t > T, the perturbation is removed. Suppose the system is initially in the tenth excited state if the...
A particle is in its ground state of an infinite square well of width a <xl i>=√2/a*sin(πx/a) and since it's an eigenstate of the Hamiltonian it will evolve as <xlα(t)>=√2/a*sin(πx/a)e^(-iE1t/ħ) where E=π2ħ2/2ma2
If the well now suddenly expands to witdh 2a
If the well suddenly expands to 2a...
Hello, I'm studying the section 2.2 of "Introduction to Quantum Mechanics, 2nd edition" (Griffiths), and he shows this equation $$\frac{\partial^2\psi}{\partial x^2} = -k^2\psi , $$ where psi is a function only of x (this equation was derivated from the time-independent Schrödinger equation) and...
Homework Statement
A particle of mass m, is in an infinite square well of width L, V(x)=0 for 0<x<L, and V(x)=∞, elsewhere.
At time t=0,Ψ(x,0) = C[((1+i)/2)*√(2/L)*sin(πx/L) + (1/√L)*sin(2πx/L) in, 0<x<L
a) Find C
b) Find Ψ(x,t)
c) Find <E> as a function of t.
d) Find the probability as a...
Homework Statement
A particle is in the n=1 state in an infinite square well of size L. What is the probability of finding the particle in the interval Δx = .006L at the point x = 3L/4?
Homework Equations
ψ(x) =√(2/L) sin(nπx/L)
The Attempt at a Solution
The problem states that because Δx is...
Homework Statement
ISW walls at 0 and L, wavefunction ψ(x) = { A for x<L/2; -A for x>L/2. Find the lowest possible energy and the probability to measure it?
Homework Equations
Schrodinger equation
ψ(x)=(√2/L)*(sin(nπx/L)
cn=√(2/a)∫sin(nπx/L)dx {0<x<a}
En=n2π2ħ2/2ma2
The Attempt at a...
Homework Statement
The global topology of a ##2+1##-dimensional universe is of the form ##T^{2}\times R_{+}##, where ##T^{2}## is a two-dimensional torus and ##R_{+}## is the non-compact temporal direction. What is the Fermi energy for a system of spin-##\frac{1}{2}## particles in this...
If we have an infinite square well, I can follow the usual solution in Griffiths but I now want to impose periodic boundary conditions. I have
\psi(x) = A\sin(kx) + B\cos(kx)
with boundary conditions \psi(x) = \psi(x+L)
In the fixed boundary case, we had \psi(0) = 0 which meant B=0 and...
Homework Statement
Suppose that an infinite square well has width L , 0<x<L. Nowthe right wall expands slowly to 2L. Calculate the geometric phase and the dynamic phase for the wave function at the end of this adiabatic expansion of the well. Note: the expansion of the well does not occur at...
Homework Statement √[/B]
A particle in an infinite square well has the initial wave function:
Ψ(x, 0) = A x ( a - x )
a) Normalize Ψ(x, 0)
b) Compute <x>, <p>, and <H> at t = 0. (Note: you cannot get <p> by differentiating <x> because you only know <x> at one instance of time)Homework...
Homework Statement
Consider a one-dimensional, non-relativistic particle of mass ##m## which can move in the three regions defined by points ##A##, ##B##, ##C##, and ##D##. The potential from ##A## to ##B## is zero; the potential from ##B## to ##C## is ##\frac{10}{m}\bigg(\frac{h}{\Delta...
Homework Statement
Is state ψ(x) an energy eigenstate of the infinite square well?
ψ(x) = aφ1(x) + bφ2(x) + cφ3(x)
a,b, and c are constants
Homework Equations
Not sure... See attempt at solution.
The Attempt at a Solution
I have no idea how to solve, and my book does not address this type...
I just noticed in reading Griffiths that he places the base of the infinite square well at a zero potential while he places the base of the finite square well at a negative potential -V_0, where V_0 is a positive, real number; is there any reason for this? I just started learning about them/am...
The quantum states ##\psi(x)## of the infinite square well of width ##a## are given by
##\psi(x) = \sqrt{\frac{2}{a}}\sin\Big(\frac{n \pi x}{a}\Big),\ n= 1,2,3, \dots##
Now, I understand ##n \neq 0##, as otherwise ##\psi(x)## is non-normalisable.
But, can't we get additional states for...
How do you know when to use exponentials and trig functions when solving for the wave function in a finite square well? I know you can do both, but is there some way to tell before hand which method will make the problem easier? Does it have something to do with parity?
Homework Statement
Consider a particle in an infinite square well potential that has the initial wave-function:
Ψ(x,0) = (1/√2) [Ψ_1(x) + Ψ_2(x)]
where Ψ_1(x) and Ψ_2(x) are the ground and first excited state wavefunctions. We notice that <x> oscillates in time. FIND the frequency of...
Homework Statement
A particle is confined between rigid walls separated by a distance L=0.189. The particle is in the second excited state (n=3). Evaluate the probability to find the particle in an interval of width 1.00 pm located at
a)x=0.188nm
b)x=0.031nm
c)x=0.79nm
What would be the...
Homework Statement
Consider a one-dimensional, nonrelativistic particle of mass m which can move in the three regions defined by points A, B, C, and D. The potential from A to B is zero; the potential from B to C is (10/m)(h/ΔL)2; and the potential from C to D is (1/10m)(h/ΔL)2. The distance...
Homework Statement
Assume a particle is in the ground state of an infinite square well of length L. If the walls of the well increase symmetrically such that the length of the well is now 2L WITHOUT disturbing the state of the system, what is the probability that a measurement would yield the...
Homework Statement
Say, for example, a wave function is defined as 1/sqrt(2)[ψ(1)+ψ(2)] where ψ are the normalized stationary state energy eigenfunctions of the ISQ.
Now, say I make a measurement of position. What becomes of the wavefunction at a time t>0 after the position measurement (i.e...
Homework Statement
Work out the variance of momentum in the infinite square well that sits between x=0 and x=aHomework Equations
Var(p) = <p2> - <p>2
$$ p = -i\hbar \frac{{\partial}}{\partial x} $$
The Attempt at a Solution
I've calculated (and understand physically) why <p> = 0
Now I'm...
Homework Statement
Consider an infinite square well defined by the potential energy function
U=0 for 0<x<a and U = ∞ otherwise
Consider a superposed state represented by the wave function ## \Psi(x,t)## given at time t=0 by
$$\Psi(x,0) = N \{(-\psi_1(x) + (1+ i)\psi_2(x)\}$$
1. Assume that...
Homework Statement
Homework Equations
The Attempt at a Solution
a) For this part, I know for distinguishable particles, the expectation value of the square distance
$$\langle (x_{1}^{2} - x_{2}^{2}) \rangle = \langle x^{2} \rangle_{2} + \langle x^{2} \rangle_{3} - 2 \langle x \rangle_{2}...
Homework Statement
A particle of mass m is confined to a space 0<x<a in one dimension by infinitely high walls at x=0 and x=a. At t=0, the particle is initially in the left half of the well with a wavefunction given by,
$$\Psi(x,0)=\sqrt{\dfrac{2}{a}}$$
for 0<x<a/2
and,
$$\Psi(x,0)=0$$
for a/2...