lorentzian metric Definition and 1 Threads

In mathematical physics, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.
Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space.
A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike.

View More On Wikipedia.org
  1. Onyx

    A What kind of topology change does this Lorentzian metric describe?

    Looking at this paper, what sort of spatial topology change does the lorentzian metric (the first one presented) describe? Does it describe the transition from spatial connectedness to disconnectedness with time? All I know is that there is some topology change involved, but I don’t see the...
Back
Top