Metric tensor Definition and 206 Threads

  1. Onyx

    I Embedding Diagram of Weyl Metric in ##R^3##

    Is it possible to make an embedding of the ##\phi##=constant slice of a Weyl metric in ##R^3##? In particular, I'm thinking of a metric where the components are both ##\rho## and ##z## dependent.
  2. Onyx

    I Metric Tensor on ##S^1## x ##S^2##

    How do I find the metric tensor on ##S^1## x ##S^2##?
  3. Clvrhammer

    I Definition of time-independent scalar field in GR

    I was wondering how the notion of a time-independent field translates into the context of General Relativity. In order to specify my confusion, consider a scalar field ##\phi## in Schwarzschild spacetime with usual coordinates ##(t,r,\theta,\phi)##. Its metric is $$g = - f(r) \, dt^2 + f(r)^{-1}...
  4. Kostik

    A Inferring coordinate change from the form of the metric

    In Dirac's discussion of gravitational waves ("GTR", Chap. 33), he is working in the case where ##g_{\mu\nu}## are plane waves: waves moving in one direction only. In this case, ##g_{\mu\nu}## is a function of the single variable ##l_\sigma x^\sigma##. Here ##l_\sigma## is the wave vector, and...
  5. ric peregrino

    On the order of indices of the Christoffel symbol of the 1st kind

    Homework Statement: The order of indices of the Christoffel symbol of the 1st kind seems to vary from source to source. Is there a preference, and if so why? Relevant Equations: Christoffel symbol of the 1st kind. The 1st definition of the Christoffel symbol of the 1st kind I came across was...
  6. Onyx

    I Correct Description of Black Hole Interior

    Does the interior coordinate patch of the Schwarzschild analytic extension really describe the interior of a black hole? After all, that portion would have mass. Also, is there a way to describe just a black hole’s with regular spherical coordinates?
  7. cianfa72

    I On the physical meaning of Minkowski's spacetime model

    Hi, I was thinking about the following. Suppose we have a geometric mathematical model of spacetime such that there exists a global map ##(t,x_1,x_2,x_3)## in which the metric tensor is in the form $$ds^2 = c^2dt^2 - (dx_1)^2 + (dx_2)^2 + (dx_3)^2$$ i.e. the metric is in Minkowski form...
  8. jv07cs

    I Do Metric Tensors Always Have Inverses?

    I am reading about musical isomorphisms and for the demonstration of the index raising operation from the sharp isomorphism, we have to multiply the equation by the inverse matrix of the metric. Can we assume that this inverse always exists? If so, how could I prove it?
  9. E

    I Is There an Identity for Different Vectors in Dimensional Regularization?

    In dimensional regularization I have seen this relation ##k^{\mu}k^{\nu}=\frac{1}{D}g^{\mu\nu}k^2## but this seems to hold for same types of four vectors k. Is there any similar identity for different vectors like ##k^{\mu}p^{\nu}=\frac{1}{D}g^{\mu\nu}k.p## ?
  10. Onyx

    B Creating Metric Describing Large Disk

    How can I create a metric describing the space outside a large disk, like an elliptical galaxy? In cylindrical coordinates, ##\phi## would be the angle restricted the the plane, as ##\rho## would be the radius restricted to the plane. I think that if ##z## is suppressed to create an embedding...
  11. P

    A Exploring a QM particle in Motion with GR

    I encountered a problem in reading Phys.Lett.B Vol.755, 367-370 (2016). I cannot derive Eq.(7), the following snapshot is the paper and my oen derivation, I cannot repeat Eq.(7) in the paper. ##g^{\mu\nu}## is diagonal metric tensor and##g^{\mu\mu}## is the function of ##\mu## only...
  12. Baela

    I Action of metric tensor on Levi-Civita symbol

    We know that a metric tensor raises or lowers the indices of a tensor, for e.g. a Levi-Civita tensor. If we are in ##4D## spacetime, then \begin{align} g_{mn}\epsilon^{npqr}=\epsilon_{m}{}^{pqr} \end{align} where ##g_{mn}## is the metric and ##\epsilon^{npqr}## is the Levi-Civita tensor. The...
  13. Onyx

    I Intra-Universe Wormhole Metrics

    Are there any metrics for intra-universe wormholes?
  14. Onyx

    B Find Geodesics in Dynamic Ellis Orbits Metric

    Does anyone see a way I can find geodesics in the metric ##ds^2=-dt^2+dp^2+(5p^2+4t^2)d\phi^2## (ones with nonzero angular momentum)? I'm hoping it can be done analytically, but that may be wishful thinking. FYI, this is the metric listed at the bottom of the Wikipedia article about Ellis Wormholes.
  15. Onyx

    B Calculate Unit Normal Vector for Metric Tensor

    How do I calculate the unit normal vector for any metric tensor?
  16. Onyx

    B Calc. Christoffel Symbols of Hiscock Coordinates

    The Hiscock coordinates read: $$d\tau=(1+\frac{v^2(1-f)}{1-v^2(1-f)^2})dt-\frac{v(1-f)}{1-v^2(1-f)^2}dx$$ ##dr=dx-vdt## Where ##f## is a function of ##r##. Now, in terms of calculating the christoffel symbol ##\Gamma^\tau_{\tau\tau}## of the new metric, where ##g_{\tau\tau}=v^2(1-f)^2-1## and...
  17. Sciencemaster

    I Calculating Spacetime Around Multiple Objects

    In describing the spacetime around a massive, spherical object, one would use the Schwarzschild Metric. What metric would instead be used to describe the spacetime around multiple massive bodies? Say, for example, you want to calculate the Gravitational Time Dilation experienced by a rocket ship...
  18. Onyx

    B Sign of Expansion Scalar in Expanding FLRW Universe

    Considering the FLWR metric in cartesian coordinates: ##ds^2=-dt^2+a^2(t)(dx^2+dy^2+dz^2)## With ##a(t)=t##, the trace of the extrinsic curvature tensor is ##-3t##. But why is it negative if it's describing an expanding universe, not a contracting one?
  19. Sciencemaster

    I Calculate Gaussian Curvature from 4D Metric Tensor

    I've been trying to find a way to calculate Gaussian curvature from a 4D metric tensor. I found a program that does this in Mathematica using the Brioschi formula. However, this only seems to work for a 2D metric or formula (I would need to use something with more dimensions). I've found...
  20. Onyx

    A Proper Volume on Constant Hypersurface in Alcubierre Metric

    I'm wondering if there is a way to find the proper volume of the warped region of the Alcubierre spacetime for a constant ##t## hypersurface. I can do a coordinate transformation ##t=τ+G(x)##, where ##G(x)=\int \frac{-vf}{1-v^2f^2}dx##. This eliminates the diagonal and makes it so that the...
  21. C

    I Calculating Relative Change in Travel Time Due to Spacetime Perturbation

    Suppose you have the following situation: We have a spacetime that is asymptotically flat. At some position A which is in the region that is approximately flat, an observer sends out a photon (for simplicity, as I presume that any calculations involved here become easier if we consider a...
  22. SH2372 General Relativity - Lecture 4

    SH2372 General Relativity - Lecture 4

    0:00 The metric tensor 12:55 Curve lengths 28:17 Metric compatibility of connections 35:47 The Levi-Civita connection 40:27 Induced metrics 50:12 Curvature and the metric 1:04:18 Killing fields and symmetries
  23. SH2372 General Relativity (7X): Coordinate transformation of metric components

    SH2372 General Relativity (7X): Coordinate transformation of metric components

  24. SH2372 General Relativity (6X): The inverse metric tensor

    SH2372 General Relativity (6X): The inverse metric tensor

  25. SH2372 General Relativity (5X): Metric components in polar coordinates

    SH2372 General Relativity (5X): Metric components in polar coordinates

  26. cianfa72

    I Raising/Lowering Indices w/ Metric Tensor

    I'm still confused about the notation used for operations involving tensors. Consider the following simple example: $$\eta^{\mu \sigma} A_{\mu \nu} = A_{\mu \nu} \eta^{\mu \sigma}$$ Using the rules for raising an index through the (inverse) metric tensor ##\eta^{\mu \sigma}## we get...
  27. yucheng

    Derivative of Determinant of Metric Tensor With Respect to Entries

    We know that the cofactor of determinant ##A##, is $$\frac{\partial A}{\partial a^{r}_{i}} = A^{i}_{r} = \frac{1}{2 !}\delta^{ijk}_{rst} a^{s}_{j} a^{t}_{k} = \frac{1}{2 !}e^{ijk} e_{rst} a^{s}_{j} a^{t}_{k}$$ By analogy, $$\frac{\partial Z}{\partial Z_{ij}} = \frac{1}{2 !}e^{ikl} e^{jmn}...
  28. Hubble_92

    I Variation of Four-Velocity Vector w/ Respect to Metric Tensor

    Hi everyone! I'm having some difficulty showing that the variation of the four-velocity, Uμ=dxμ/dτ with respect the metric tensor gαβ is δUμ=1/2 UμδgαβUαUβ Does anyone have any suggestion? Cheers, Rafael. PD: Thanks in advances for your answers; this is my first post! I think ill be...
  29. A

    I Deriving Contravariant Form of Levi-Civita Tensor

    The covariant form for the Levi-Civita is defined as ##\varepsilon_{i,j,k}:=\sqrt{g}\epsilon_{i,j,k}##. I want to show from this definition that it's contravariant form is given by ##\varepsilon^{i,j,k}=\frac{1}{\sqrt{g}}\epsilon^{i,j,k}##.My attemptWhat I have tried is to express this tensor...
  30. A

    I Showing Determinant of Metric Tensor is a Tensor Density

    I'm trying to show that the determinant ##g \equiv \det(g_{ij})## of the metric tensor is a tensor density. Therefore, in order to do that, I need to show that the determinant of the metric tensor in the new basis, ##g'##, would be given by...
  31. A

    I Expressing Vectors of Dual Basis w/Metric Tensor

    I'm trying to understand why it is possible to express vectors ##\mathbf{e}^i## of the dual basis in terms of the vectors ##\mathbf{e}_j## of the original basis through the dual metric tensor ##g^{ij}##, and vice versa, in these ways: ##\mathbf{e}^i=g^{ij}\mathbf{e}_j##...
  32. Arman777

    A Deriving Essential Quantities from Metric Tensor for GR Calculations

    I am working on a computational project about General Relativity. In this process, I want to code 'the stuff' that can be derivable from the metric tensor. So far, I have coded Riemann Tensor, Weyl Tensor, Einstein Tensors, Ricci Tensor, Ricci scalar. What are the other essential/needed...
  33. A

    Divergence in Spherical Coordinate System by Metric Tensor

    The result equation doesn't fit with the familiar divergence form that are usually used in electrodynamics. I want to know the reason why I was wrong. My professor says about transformation of components. But I cannot close to answer by using this hint, because I don't have any idea about "x"...
  34. Pyter

    B Metric tensor for a uniformly accelerated observer

    Hello all, let's suppose we have, in a flat spacetime, two observers O and O', the latter speeding away from O, with an uniform acceleration ##a##. In the Minkowski spacetime chart of O, the world-line of O' can be drawn as a parable. We know that the Lorentz boost at every point of the...
  35. tomdodd4598

    I Argument for Existence of Normal Coordinates at a Point

    Hey there, I've been recently been going back over the basics of GR, differential geometry in particular. I was watching one of Susskind's lectures and did not understand the argument made here (26:33 - 35:40). In short, the argument goes as follows (I think): we have some generic metric ##{ g...
  36. Q

    I Metric Tensor: Symmetry & Other Constraints

    Aside from being symmetric, are there any other mathematical constraints on the metric?
  37. Q

    A Variation of Metric Tensor Under Coord Transf | 65 chars

    Under the coordinate transformation $\bar x=x+\varepsilon$, the variation of the metric $g^{\mu\nu}$ is: $$ \delta g^{\mu\nu}(x)=\bar g^{\mu\nu}(x)-g^{\mu\nu}(x)=-\frac{\partial{ g^{\mu\nu}}}{\partial x^{\alpha}}\varepsilon^{\alpha}+ g^{\mu\beta}\frac{\partial \varepsilon^{\nu}}{\partial...
  38. P

    Show that the metric tensor is independent of coordinate choice

    I need to use some property of the relalation between the coordinate systems to prove that g_{hk} is independent of the choice of the underlying rectangular coordinate system. I will try to borrow an idea from basic linear algebra. I expect any transformation between the rectangular systems to...
  39. W

    Solving Metric Tensor Problems: My Attempt at g_μν for (2)

    My attempt at ##g_{\mu \nu}## for (2) was \begin{pmatrix} -(1-r^2) & 0 & 0 & 0 \\ 0 &\frac{1}{1-r^2} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2(\theta) \end{pmatrix} and the inverse is the reciprocal of the diagonal elements. For (1) however, I can't even think of how to write the...
  40. M

    A Anisotropic Universe and Friedmann Equations

    The Friedman Equations is based on the cosmological principle, which states that the universe at sufficiently large scale is homogeneous and isotropic. But what if, as an hypothesis, the universe was anisotropic and the clustering of masses are aligned to an arbitrary axis (axial pole), how...
  41. T

    Did I Get These Metric Tensors Right?

    I have been teaching myself general relativity and wanted to see if I got these metric tensors right, I have a feeling I didn't.For the first one I get all my directional derivatives (0, 0): (0)i + (0)j (0, 1): (0)i + 2j (1, 0): 2i + (0)j (1, 1): 2i + 2j Then I square them (FOIL): (0, 0): (0)i...
  42. snoopies622

    I The vanishing of the covariant derivative of the metric tensor

    I brought up this subject here about a decade ago so this time I'll try to be more specific to avoid redundancy. In chapter five of Bernard F. Schutz's A First Course In General Relativity, he arrives at the conclusion that in flat space the covariant derivative of the metric tensor is zero...
  43. D

    I What is the Purpose of Calculating the Christoffel Symbols in Curved Spacetime?

    Calculating the christoffel symbols requires taking the derivatives of the metric tensor. What are you taking derivatives of exactly? Are you taking the derivatives of the inner product of the basis vectors with respect to coordinates? In curvilinear coordinates, for instance curved spacetime in...
  44. D

    I Help Understanding Metric Tensor

    I am trying to get an intuition of what a metric is. I understand the metric tensor has many functions and is fundamental to Relativity. I can understand the meaning of the flat space Minkowski metric ημν, but gμν isn't clear to me. The Minkowski metric has a trace -1,1,1,1 with the rest being...
  45. olgerm

    I Invariant properties of metric tensor

    Which properties of metric tensor are invariant of basevectors transforms? I know that metric tensor depends of basevectors, but are there properties of metric tensor, that are basevector invariant and describe space itself?
  46. M

    I Convert Metric Tensor to Gravity in GR

    I am still learning general relativity (GR). I know we can find the path of a test particle by solving geodesic equations. I am wondering if it is possible to derive/convert metric tensor to gravity, under weak approximation, and vice versa. Thanks!
  47. K

    I Gradient vector without a metric

    Is it possible to introduce the concept of a gradient vector on a manifold without a metric?
  48. Ibix

    I Coordinates for diagonal metric tensors

    In the recent thread about the gravitational field of an infinite flat wall PeterDonis posted (indirectly) a link to a mathpages analysis of the scenario. That page (http://www.mathpages.com/home/kmath530/kmath530.htm) produces an ansatz for the metric as follows (I had to re-type the LaTeX -...
Back
Top