A non-inertial reference frame is a frame of reference that undergoes acceleration with respect to an inertial frame. An accelerometer at rest in a non-inertial frame will, in general, detect a non-zero acceleration. While the laws of motion are the same in all inertial frames, in non-inertial frames, they vary from frame to frame depending on the acceleration.In classical mechanics it is often possible to explain the motion of bodies in non-inertial reference frames by introducing additional fictitious forces (also called inertial forces, pseudo-forces and d'Alembert forces) to Newton's second law. Common examples of this include the Coriolis force and the centrifugal force. In general, the expression for any fictitious force can be derived from the acceleration of the non-inertial frame. As stated by Goodman and Warner, "One might say that F = ma holds in any coordinate system provided the term 'force' is redefined to include the so-called 'reversed effective forces' or 'inertia forces'."In the theory of general relativity, the curvature of spacetime causes frames to be locally inertial, but globally non-inertial. Due to the non-Euclidean geometry of curved space-time, there are no global inertial reference frames in general relativity. More specifically, the fictitious force which appears in general relativity is the force of gravity.
I am doing some study about the lorentz transformation between non-inertial frames. I wonder if the tranformation is the same as in SR. I need to do the transformation of EM fields in a constantly rotational frame. Can anybody help me with this one. Is there anybook I can refer to? Many thanks.
Homework Statement
I don't really understand how to approach problems like these
A lift has a downward acceleration of kg (k<1). Inside the lift is mounted a pulley, of negligible friction and inertia, over which passes an inextensible string carrying two objects of masses m and 3m.
a...
Homework Statement
The steel ball is suspended from the accelerating frame by the two cords A and B. The angles (they are on the inside) are both 60 degrees.
Determine the acceleration of the frame which will cause the tension in A to be twice that in B. The acceleration is going to the...
hey guys!
i have a problem in physics which i could'nt solve:
a car is moving with constant linear acceleration a along horizontal x-axis. A solid sphere of mass M and radius R is found rolling without slipping on the horizontal floor of the car in the same direction as seen from an inertial...