Partial derivative Definition and 374 Threads

  1. W

    I Partial derivative of Dirac delta of a composite argument

    I'm trying to prove the following statement: $$ D\partial_t\left(\delta\circ\mathbf{v}\right) = J^i\partial_i\left(\delta\circ\mathbf{v}\right), $$ where ##\mathbf{v}## is some function of time and ##n##-dimensional space, ## D ## is the Jacobian determinant associated with ##\mathbf{v}##, that...
  2. L

    I Differentiability of a Multivariable function

    I’m having a little confusion about part b of this question as to why I am allowed to use the limit definition of a partial derivative. Here’s what I think: I know that y^3/(x^2+y^2) is undefined at the origin but it does approach 0 when it GETS CLOSE to the origin. So technically defining...
  3. nrsakinh

    Need a real life example where a partial derivative is used in motion

    my group is preferring the ue of partial derivative to find the acceleration of a car or the projectile motion of something being launched
  4. workhorse123

    Potential in the three regions of an infinite slab

    for the boundary conditions for this problem I understand that Electric field and Electric potential will be continuous on the boundaries. I also know that I can set the reference point for Electric potential, wherever it is convenient. This gives me the fifth boundary condition. I am confused...
  5. S

    Find f(x,y) given partial derivative and initial condition

    My attempt: $$\frac{\partial f}{\partial x}=-\sin y + \frac{1}{1-xy}$$ $$\int \partial f=\int (-\sin y+\frac{1}{1-xy})\partial x$$ $$f=-x~\sin y-\frac{1}{y} \ln |1-xy|+c$$ Using ##f(0, y)=2 \sin y + y^3##: $$c=2 \sin y + y^3$$ So: $$f(x,y)=-x~\sin y-\frac{1}{y} \ln |1-xy|+2 \sin y + y^3$$ Is...
  6. B

    Partial Derivative Simplification

    Hi there! I would like to know if the following simplification is correct or not: Let A be a function of x, y, and z $$\frac{\partial^2A}{\partial x^2}+\frac{\partial^2A}{\partial y^2}$$ $$=\ \frac{\partial^2A\partial y^2+\partial^2A\partial x^2}{\partial x^2\partial y^2}$$...
  7. S

    Multivariable calculus problem involving partial derivatives along a surface

    I just wanted to know if my solution to part (b) is correct. Here's what I did: I took the partial derivative with respect to x and y, which gave me respectively. Then I computed the partial derivatives at (-3,4) which gave me 3/125 for partial derivative wrt x and -4/125 for partial derivative...
  8. abobik

    Find the partial diameter error of the surface area of cylinder

    (ΔSA/ΔD) = 2πHΔD Something is wrong I guess as I get wrong value.
  9. M

    Find Isobaric Expansion & Pressure-Volume Coefficient for Solid

    The answer to this problem is However, I am confused how this relates to the question. My working is, ##V = cT^2 - bpT## ##\frac{dV}{dT} = 2cT - bp## (I take the partial derivative of volume with respect to temperature to get the isobaric expansion coefficient) ##\frac{dV}{dP} = 0## (I take...
  10. Silvia2023

    For this Partial Derivative -- Why are different results obtained?

    Given a function F(x,y)=A*x*x*y, calculate dF(x,y)/d(1/x), to calculate this derivative I make a change of variable, let u=1/x, then the function becomes F(u,y)=A*(1/u*u)*y, calculating the derivative with respect to u, we have dF/du=-2*A*y*(1/(u*u *u)) replacing we have dF/d(1/x)=-2*A*x*x*x*y...
  11. P

    What does this expression involving Partial Derivatives mean?

    I already solved w x x/|x| For (w1,w2,w3) and (x1,x2,x3)
  12. BloonAinte

    I Finding the time for the first shock for a quasilinear first order PDE

    To find a shock wave, do we always solve the equation ##x_{\xi}=0##? The PDEs I consider are of the form ##u_t + g(u) u_x = f(u)##, with initial condition ##u(x,0) = h(x)##. I have been looking at the solutions for problems in my homework sheet but this method was used with no explanation. Why...
  13. N

    Correct Usage of Partial Derivative Symbols in PDEs

    Some may say that ##\frac{ \partial g }{ \partial t }## is correct because it is a term in a partial differential equation, but since ##g## is a one variable function with ##t## only, I think ##\frac{ dg }{ dt }## is correct according to the original usage of the derivative and partial...
  14. L

    B Question about the definition of a partial derivative

    I just started to study thermodynamics and very often I see formulas like this: $$ \left( \frac {\partial V} {\partial T} \right)_P $$ explanation of this formula is something similar to: partial derivative of ##V## with respect to ##T## while ##P## is constant. But as far as I remember...
  15. G

    I Understanding Covariant and Partial Derivatives in General Relativity

    In the 128 pages of 《A First Course in General Relativity - 2nd Edition》:"The covariant derivative differs from the partial derivative with respect to the coordinates only because the basis vectors change."Could someone give me some examples?I don't quite understand it.Tanks!
  16. J

    Calculating the partial derivative in polar coordinates

    Hello, I am trying to solve the following problem: If ##z=f(x,y)##, where ##x=rcos\theta## and ##y=rsin\theta##, find ##\frac {\partial z} {\partial r}## and ##\frac {\partial z} {\partial \theta}## and show that ##\left( \frac {\partial z} {\partial x}\right){^2}+\left( \frac {\partial z}...
  17. Delta2

    I From a proof on directional derivatives

    Given that the partial derivatives of a function ##f(x,y)## exist and are continuous, how can we prove that the following limit $$\lim_{h\to 0}\frac{f(x+hv_x,y+hv_y)-f(x,y+hv_y)}{h}=v_x\frac{\partial f}{\partial x}(x,y)$$ I can understand why the factor ##v_x## (which is viewed as a constant )...
  18. J

    I Partial Derivative of Convolution

    Hello, I am trying to calculate the partial derivative of a convolution. This is the expression: ##\frac{\partial}{\partial r}(x(t) * y(t, r))## Only y in the convolution depends on r. I know this identity below for taking the derivative of a convolution with both of the functions only...
  19. A

    Calculating specific heat capacity from entropy

    Hey guys! I'm currently struggling with a specific thermodynamics problem. I'm given the entropy of a system (where ##A## is a constant with fitting physical units): $$S(U,V,N)=A(UVN)^{1/3}$$I'm asked to calculate the specific heat capacity at constant pressure ##C_p## and at constant volume...
  20. L

    A Heisenberg equation of motion -- Partial derivative question

    Heisenberg equation of motion for operators are given by i\hbar\frac{d\hat{A}}{dt}=i\hbar\frac{\partial \hat{A}}{\partial t}+[\hat{A},\hat{H}]. Almost always ##\frac{\partial \hat{A}}{\partial t}=0##. When that is not the case?
  21. S

    A Index notation and partial derivative

    Hi all, I am having some problems expanding an equation with index notation. The equation is the following: $$\frac {\partial{u_i}} {dx_j}\frac {\partial{u_i}} {dx_j} $$ I considering if summation index is done over i=1,2,3 and then over j=1,2,3 or ifit does not apply. Any hint on this would...
  22. D

    Help taking a partial derivative

    Hi all, I was wondering is if the following partial derivative can be computed without a specific ##u(t,x)## $$\partial_tu\big[(t,x-t\kappa V)\big]$$ I was thinking it can't be done, because we could have $$u_a(t,x)=tx \Rightarrow \partial_tu\big[(t,x-t\kappa...
  23. J

    Solving a Partial Derivative Problem Step-by-Step

    So I start by isolating v the speed here would be the square root of the partial t derivative divided by the sum of the partial x and y derivatives. the amplitude, phi and the cos portion of the partial derivatives would all cancel out. What I am left with is the sqrt(43.1 / ( 2.5 + 3.7 ) =...
  24. F

    I Divergence & Curl -- Is multiplication by a partial derivative operator allowed?

    Divergence & curl are written as the dot/cross product of a gradient. If we take the dot product or cross product of a gradient, we have to multiply a function by a partial derivative operator. is multiplication by a partial derivative operator allowed? Or is this just an abuse of notation
  25. P

    Interpreting a thermodynamics formula using a picture

    I notice that ##pv=t## looks like the ideal gas law but with ##T## in units of energy. I know that ##pV = \text{constant}## means that the pressure of a gas decreases as you expand it (Boyle-Mariotte's law), explaining for instance how we breathe. I guess I could put everything in words even...
  26. R

    I Why Does the Partial Derivative of a Sum Cancel Out?

    Why the summation of the following function will be canceled out when we take the partial derivative with respect to the x_i? Notice that x_i is the sub of (i), which is the same lower limit of the summation! Can someone, please explain in details?
  27. M

    Partial derivative of Vxx w.r.t. r in terms of Vxx

    Can anyone please help me to write partial derivative of Vxx w.r.t. r in terms of Vxx as shown in the hand written box at the end.
  28. LCSphysicist

    Sign of a second partial derivative

    I am not sure how to determine the sign of this derivatives. (a) first we can pass a plane by (1,2) parallel to XZ (y fixed) and see how the curve belongs to the plane will vary with x, but what about the next partial derivative, with respect to y?
  29. S

    B Reconciling basis vector operators with partial derivative operators

    Ref. 'Core Principles of Special and General Relativity' by Luscombe. Apologies in advance for the super-long question, but it's necessary to show my thought process. Let ##\gamma:I\to M## be a smooth curve from an open interval ##I\subset\mathbb{R}## to a manifold ##M##, and let...
  30. BvU

    Improving vertical symbol spacing in partial derivative equations

    It's a detail, but annoying to me: ##{\partial u\over \partial x} = {\partial \phi \over \partial x} \;+ ...## $${\partial u\over \partial x} = {\partial \phi \over \partial x} \;+ ...$$ How do I move up ##\partial u## a little bit so it aligns with ##\partial \phi## ?
  31. R

    Can we take the partial derivatives of φ and ψ here?

    I research about coordinate systems and I found the following informations about transformation. Now, if I replace arctan (x/y) (according to the picture above) to φ, I think I can solve. But if I can do this, then what will be replaced to ψ? I mean, I know just taking partial derative about...
  32. A

    I The Ratio of Total Derivatives

    If we have two functions C(y(t), r(t)) and I(y(t), r(t)) can we write $$\frac{\frac{dC}{dt}}{\frac{dI}{dt}}=\frac{dC}{dI}$$?
  33. A

    I Understanding Mixed Partial Derivatives: How Do You Solve Them?

    While working at home during the COVID-19 pandemic I've taken to seeing if I can still do math from undergrad (something I do once in a while to at least pretend my life isn't dominated by excel). So to that I've been reviewing partial derivatives (which I haven't really thought about in a good...
  34. SchroedingersLion

    A Partial derivative of composition

    Hi guys, suppose we have a function ##C(x, y)## into the real numbers. Suppose also that ##y=y(x)##, i.e. ##y## is a function of ##x##. Now in my script, I have a term ##\nabla_x C(x_0, y(x_0)) ##. From my point of view, this means that you take the partial derivative of ##C(x,y)## with...
  35. Saptarshi Sarkar

    Negative or Positive Partial Derivative

    My attempt I calculated the partial derivatives of n wrt P and T. They are given below. ##\frac {\partial n}{\partial P} = \frac{nb -1}{\left(2an-Pb-3abn^2-kT\right )}## ##\frac {\partial n}{\partial T}= \frac {nk}{\left(2an-Pb-3abn^2-kT \right ) }## I know that if the partial derivative is...
  36. currently

    Partial Derivative of a formula based on the height of a cylinder

    The function should use (r,z,t) variables The domain is (0,H) Since U is not dependent on angle, then theta can be ignored in the expression for Laplacian in cylindrical coordinates(?)
  37. WhiteWolf98

    Triple Product Rule Equivalency

    ##p=\frac {RT} v;~p=p(T,v)~...1## ##v=\frac {RT} p;~v=v(T,p)~...2## ##T=\frac {pv} R;~T=T(p,v)~...3## ##Considering~eq.~1:## ##p=\frac {RT} v \Rightarrow (\frac {\partial p} {\partial v})_T=-\frac {RT} {v^2}## ##Considering~eq.~2:## ##v=\frac {RT} p \Rightarrow (\frac {\partial v}...
  38. George Keeling

    I Question about a partial derivative

    I apologise for the length of this question. It is probably possible to answer it by reading the first few lines. I fear I have made a childish error: I am working on the geodesic equation for the surface of a sphere. While doing so I come across the partial derivative \begin{align}...
  39. C

    Differential Integration Problem

    Attempt at solution: Writing the chain rule for ## E(V,T) ##: ## dE = \frac{\partial E}{\partial T}dT + \frac{\partial E}{\partial V}dV ## Then, integrating the differential: ## \int{ dE } = \int{ \frac{\partial E}{\partial T}dT } + \int{ \frac{\partial E}{\partial V}dV } ## If I put the...
  40. F

    A The partial derivative of a function that includes step functions

    I have this function, and I want to take the derivative. It includes a unit step function where the input changes with time. I am having a hard time taking the derivative because the derivative of the unit step is infinity. Can anyone help me? ##S(t) = \sum_{j=1}^N I(R_j(t)) a_j\\ I(R_j) =...
  41. A

    I Partial Derivative: Correct Formulation?

    If given a function ##u(x,y) v(x,y)## then is it correct to write ##\frac{\partial }{\partial x}u(x,y)v(x,y)=\frac{u(x+dx,y)v(x+dx,y)-u(x,y)v(x,y)}{dx}##??
  42. A

    Finding the partial derivative from the given information

    It seems that the way to combine the information given is z = f ( g ( (3r^3 - s^2), (re^s) ) ) we know that the multi-variable chain rule is (dz/dr) = (dz/dx)* dx/dr + (dz/dy)*dy/dr and (dz/ds) = (dz/dx)* dx/ds + (dz/dy)*dy/ds ---(Parentheses indicate partial derivative) other perhaps...
  43. Celso

    I Partial derivative interpretation

    How do I interpret geometrically the partial derivative in respect to a constant of a function such as ##\frac{ \partial}{\partial c} (acos(x) + be^x + c)^2##?
  44. Boltzman Oscillation

    Help explaining the chain rule please

    I had already calculated the first partial derivative to equal the following: $$\frac{\partial y}{\partial t} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial v}{\partial t}$$ Now the second partial derivative I can use the chain rule to do and get to...
  45. CCMarie

    A Multi-variable function depending on the Heaviside function

    How can I calculate ∂/∂t(∫01 f(x,t,H(x-t)*a)dt), where a is a constant, H(x) is the Heaviside step function, and f is I know it must have something to do with distributions and the derivative of the Heaviside function which is ∂/∂t(H(t))=δ(x)... but I don't understand how can I work with the...
  46. K

    Meaning of subscript in partial derivative notation

    Homework Statement I'm given a gas equation, ##PV = -RT e^{x/VRT}##, where ##x## and ##R## are constants. I'm told to find ##\Big(\frac{\partial P}{\partial V}\Big)_T##. I'm not sure what that subscript ##T## means? Homework Equations ##PV = -RT e^{x/VRT}## Thanks a lot in advance.
  47. D

    Derivative for a Galilean Tranformation

    Homework Statement Using the chain rule, find a, b, c, and d: $$\frac{\partial}{\partial x'} = a\frac{\partial}{\partial x} + b\frac{\partial}{\partial t}$$ $$\frac{\partial}{\partial t'} = c\frac{\partial}{\partial x} + d\frac{\partial}{\partial t}$$ Homework Equations Chain rule...
  48. Peter Alexander

    Solving Second Order Partial Derivative By Changing Variable

    1. The problem statement, all variables, and given/known data Given is a second order partial differential equation $$u_{xx} + 2u_{xy} + u_{yy}=0$$ which should be solved with change of variables, namely ##t = x## and ##z = x-y##. Homework Equations Chain rule $$\frac{dz}{dx} = \frac{dz}{dy}...
  49. Jamie_Pi

    Is D(x,t) = ln(ax+bt) a solution to the wave function?

    Homework Statement Show that the displacement D(x,t) = ln(ax+bt), where a and b are constants, is a solution to the wave function. Homework Equations I'm not sure which one to use: D(x,t) = Asin(kx+ωt+φ) ∂2D/∂t2 = v2⋅∂2D/∂x2 The Attempt at a Solution I'm completely lost on where to start...
  50. C

    Partial derivative w.r.t. another partial derivative

    Homework Statement Given $$L = \left(\nabla\phi + \dot{\textbf{A}}\right)^2 ,$$ how do you calculate $$\frac{\partial}{\partial x}\left(\frac{\partial L}{\partial(\partial\phi / \partial x)}\right)?$$ Homework Equations By summing over the x, y, and z derivatives, the answer is supposed to...
Back
Top