Hi.
If the refractive index of a medium equals one, the total emitted blackbody intensity inside a medium is sigma*T^4.
In general, if the refractive index of a is a real number, the total emitted blackbody intensity inside a medium is n^2*sigma*T^4.
Now, when the refractive index of the medium...
Hi,
Refractive index can be complex.
When Snell's law is taken into account refraction angle can also be complex.
What is the meaning of the imaginary part and the real part of the refraction angle?
Which angle should I take into account when I want to follow the direction of a thermal...
##e## is emissivity
##\sigma## is the Stefan-Boltzmann constant, ##5.67*10^{-8} W m^{-2} K^{-4}##
A is the surface area
T is the temperature
##\frac{dQ}{dt}## is the rate of heat transfer or radiated power
At first glance this appeared to be an easy problem, just plug in the values and go, so...
Hi,
I'm trying to solve a problem involving radiation in a triangular cavity:
As you can see, lengths and emissivities of all surfaces are given. For two of them, the heat flux is known and the temperature has to be found while for the remaining surface it's the other way around.
I have the...
Homework Statement:: Sand is rough and black so it is a good absorber and radiator of heat depending on temperature.
During the day, sand's radiation of the sun's energy superheats the air and causes temperatures to soar. But, at night most of the heat in the sand quickly radiates into the air...
Hi,
the approximate (not accounting for plate size and separation distance) formula for heat flux exchanged via radiation between two parallel plates is:
$$q=\frac{\sigma (T_{1}^{4}-T_{2}^{4})}{\frac{1}{\varepsilon_{1}}+\frac{1}{\varepsilon_{2}}-1}$$ where: ##\sigma## - Stefan-Boltzmann...
Hi guys, I am confused about the heat transfer mode of between two contacting material, especially in a channel flow.
Obviously, conduction or convection dominate the heat transfer process in the process with low object temperature .
But I am not sure if I have a fluid of 500 Kelvin, flowing...
The intensity is proportional to the square of the distance between the source and the body and also depends on the angle of incident.
I = The intensity at 0° (Assuming I = some constant)
then I0 = I cos(Theta)
Theta = the angle of incidence.
I want to solve this using trignomentry. Is it...
I have two bodies, one at a higher temperature say 1000°C (Body A) and the other is at 22°C (Body B).
Body A emits Radiation (Surface to Surface interaction). The temperature of Body A is maintained by a constant supply of Energy.
The Body B will absorb the Radiation Energy from Body A, and its...
Homework Statement
I'm a little bit stuck with this exercise.A small body with temperature T and emissivity ε is placed in a large evacuated cavity with interior walls kept at temperature Tw. When Tw-T is small, show that the rate of heat transfer by radiation is
$$...
Hi all,
I am new here, and want to thank you for help in advance! I am working on a project and need some help - I need to figure out surface temp on an object at some distance from the heat source:
I need some help getting started.
Is it going to be: Heat transfer (radiation) + Heat...
My textbook says that net rate of heat transfer due to radiation is εσA(T^4-To^4) but i couldn't understand it.
Rate of emission is εσAT^4 and rate of absorption is aσATo^4 so net rate of heat transfer must be εσAT^4-aσATo^4(where T is the temperature of body and To is the temperature of...
Hi everyone. I have here a problem understanding the stability of heat transfer through radiation. I'll give you some background, and later on I'll describe the physical problem.
Background
I am simulating the unsteady radiative heat transfer between mutually visible surfaces of objects through...
In the energy balance of a system where a small object at T1 enclosed in a body at T2 given by the Stefan-Boltzmann equation
q = A1ε1σT14 - A1α12σT24
shouldn't it be a differential equation since the small body could be absorbing/releasing sufficient net energy from the enclosing body that...
Homework Statement
"The urban heat island (UHI) effect refers to the phenomenon of a metropolitan or built up area which
is significantly warmer than its surrounding areas." Using white paint in roofs increases the solar reflectance and decrease the thermal intake into a building.
Question:-...
Hi,
We are doing radiation analysis using solidworks simulation..And as a part of this project i need to validate it theretically..Hope i will get some help here..
Its cylindrical vacuum furnace,where inside strip type heating elements are placed which are connected to transformer of 60kW.After...
I attached the problem of interest (probably the only part you guys need to see is the equations at the bottom).
My answers are off by a magnitude of 10 compared to the solutions. (copy and pasted it below since the pic is a little hard to see at the bottom)
q = σε f*A(T^4 − Ts^4 )
= 5.67...
Hi guys,
could you concretely explain me (also with a simple example) the difference between blackbody emissive power (sometimes found as e'λb) and blackbody radiation intensity (i^{'}_{λb})? and which the difference between a diffuse surface and a surface that follows the Lambert law?
Thank...
Lets say a hot object is at 500K and placed in a chamber with wall temperature of 300K. The surrounding air in the chamber is 320K.
So what is the mode of heat transfer for the hot objection? There is convection and radiation. so the heat transfer rate, q = q(conv) + q(rad), right...
Hello,
I need help with this problem,
Find radiosity B as a function of coordinates (x,y) over a V-shape or rectangular cavity. Consider the two walls and the surroundings to constitute an enclosure. Without any loss of generality, the cavity can have a unit depth. The temperature and...
I want to simulate radiation heat transfer between two surfaces which are in the vacuum using FemLab3.1. However, the heat transfer module only consider conduction and convection. Some additional examples I found incorporate radiation (with surace-to-surface option) but they need a conduction...
I'm reviewing a letter regarding the sheilding of an object using a superconducting magnet as is commonly found in MRI machines. The claim is that the magnetic field created by superconducting windings (wire which is carrying a current and thus creating a magnetic field) and wrapped around an...