Taylor expansion Definition and 174 Threads

  1. I

    Problems with the Riemann tensor in general relativity

    After Taylor expansion and using equations (2), I have no problem getting to equation (1). Now obviously I have to somehow use (3.71) ,which I do know how, to derive to express the second order derivative. On the internet I found equation (3), and I have tried to understand where this comes from...
  2. deuteron

    Taylor Expansion for very small and very big arguments

    The function is $$ f(x)=\sqrt{1-x}$$ and we are expected to expand it using Taylor expansion for very small ##(x<<1)## and very big ##(x>>1)## arguments My thought process was the following: $$T_2f[x;x_0]=\sqrt{1-x_0} -\frac 12 \frac 1{\sqrt{1-x_0}}(x-x_0) -\frac 14 \frac 1...
  3. I

    Let k∈N, Show that there is i∈N s.t (1−(1/k))^i − (1−(2/k))^i ≥ 1/4

    let ##k \in\mathbb{N},## Show that there is ##i\in\mathbb{N} ##s.t ##\ \left(1-\frac{1}{k}\right)^{i}-\left(1-\frac{2}{k}\right)^{i}\geq \frac{1}{4} ## I tried to use Bernoulli's inequality and related inequality for the left and right expression but i the expression smaller than 1/4 for any i...
  4. L

    I Taylor expansion of f(x)=arctan(x) at infinity

    I have to write taylor expansion of f(x)=arctan(x) around at x=+∞. My first idea was to set z=1/x and in this case z→0 Thus I can expand f(z)= arctan(1/z) near 0 so I obtain 1/z-1/3(z^3) Then I try to reverse the substitution but this is incorrect .I discovered after that...
  5. M

    I Help with a derivation from a paper (diatomic molecular potential)

    Hello! I am confused about the derivation in the screenshot below. This is in the context of a diatomic molecular potential, but the question is quite general. Say that the potential describing the interaction between 2 masses, as a function of the radius between them is given by the anharmonic...
  6. C

    I Taylor Expansion of Metric Transformation in RNCs

    Carroll expands both sides of metric transformation (Notes eq2.35, Book eq2.48) to equate powers of x’. He starts with eq2.36 (2.49): So far so good, though I feel my understanding of multivariable Taylor series starting to struggle. He refers to Schutz for details, where I find eq 6.23...
  7. Reuben_Leib

    I Why does ##u## need to be small to represent the Taylor expansion

    Necessary condition for a curve to provide a weak extremum. Let ##x(t)## be the extremum curve. Let ##x=x(t,u) = x(t) + u\eta(t)## be the curve with variation in the neighbourhood of ##(\varepsilon,\varepsilon')##. Let $$I(u) = \int^b_aL(t,x(t,u),\dot{x}(t,u))dt = \int^b_aL(t,x(t) +...
  8. L

    I Taylor Expansion Question about this Series

    Can you please explain this series f(x+\alpha)=\sum^{\infty}_{n=0}\frac{\alpha^n}{n!}\frac{d^nf}{dx^n} I am confused. Around which point is this Taylor series?
  9. Z

    How to choose the correct function to use for a Taylor expansion?

    Consider two different Taylor expansions. First, let ##f_1(s)=(1+s)^{1/2}## $$f_1'(s)=-\frac{1}{2(1+s^{3/2})}$$ Near ##s=0##, we have the first order Taylor expansion $$f_1(s) \approx 1 - \frac{s}{2}$$ Now consider a different choice for ##f(s)## $$f_2(s)=(1+s^2)^{1/2}$$...
  10. B

    Understanding Taylor Expansion near a Point

    I'm just trying to understand how this works, because what I've been looking at online seems to indicate that I evaluate at ##\delta =0## for some reason, but that would make the given equation for the Taylor series wrong since every derivative term is multiplied by some power of ##\delta##...
  11. C

    Can you use Taylor Series with mathematical objects other than points?

    I was recently studying the pressure gradient force, and I found it interesting (though this may be incorrect) that you can use a Taylor expansion to pretend that the value of the internal pressure of the fluid does not matter at all, because the internal pressure forces that are a part of the...
  12. A

    Problem with series convergence — Taylor expansion of exponential

    Good day and here is the solution, I have questions about I don't understand why when in the taylor expansion of exponential when x goes to infinity x^7 is little o of x ? I could undesrtand if -1<x<1 but not if x tends to infinity? many thanks in advance!
  13. A

    I Taylor expansion of an unknown function

    Hello, I have a question regarding the Taylor expansion of an unknown function and I would be tanksful to have your comments on that. Suppose we want to find an analytical estimate for an unknown function. The available information for this function is; its exact value at x0 (f0) and first...
  14. O

    I Derive local truncation error for the Improved Euler Method

    I'm trying to find the local truncation error of the autonomous ODE: fx/ft = f(x). I know that the error is |x(t1) − x1|, but I can't successfully figure out the Taylor expansion to get to the answer, which I believe is O(h^3). Any help would be greatly appreciated!
  15. Neothilic

    I How to find the moments using the characteristic function?

    I have the characteristic function of the Cauchy distribution ##C(t)= e^{-(\mid t \mid)}##. Now, how would I show that the Cauchy distribution has no moments using this? I think you have to show it has no Taylor expansion around the origin. I am not sure how to do this.
  16. troglodyte

    I Struggling with one step to show quantum operator equality

    Hello guys, I struggle with one step in a calculation to show a quantum operator equality .It would be nice to get some help from you.The problematic step is red marked.I make a photo of my whiteboard activities.The main problem is the step where two infinite sums pops although I work...
  17. S

    Taylor expansion of an Ising-like Hamiltonian

    For the case when ##B=0## I get: $$Z = \sum_{n_i = 0,1} e^{-\beta H(\{n_i\})} = \sum_{n_i = 0,1} e^{-\beta A \sum_i^N n_i} =\prod_i^N \sum_{n_i = 0,1} e^{-\beta A n_i} = [1+e^{-\beta A}]^N$$ For non-zero ##B## to first order the best I can get is: $$Z = \sum_{n_i = 0,1}...
  18. L

    Using a Taylor expansion to prove equality

    Homework Statement: Use Taylor expansion to show that for ##u \in C^4([0,1]) ## $$ max |\partial^+\partial^-u(x) - u''(x)| = \mathcal{O}(h^2)$$ For ##x \in [0,1]## and where the second order derivative ##u''## can be approximated by the central difference operator defined by...
  19. Jason Bennett

    (Physicist version of) Taylor expansions

    3) Taylor expansion question in the context of Lie algebra elements: Consider some n-dimensional Lie group whose elements depend on a set of parameters \alpha =(\alpha_1 ... \alpha_n) such that g(0) = e with e as the identity, and that had a d-dimensional representation D(\alpha)=D(g( \alpha)...
  20. E

    Find the Maximum of a Multi-variable Taylor Series

    Firstly, the matrix notation of the series is, \begin{align*} f\left(x, y, z\right) &= f\left(a, b, c\right) + \left(\mathbf{x} - \mathbf{a}\right)^T \frac{\partial f\left(a, b, c\right)}{\partial \mathbf{x}} + \frac{1}{2}\left(\mathbf{x} - \mathbf{a}\right)^T \frac{\partial^2 f\left(a, b...
  21. CricK0es

    Expanding a function for large E using the Taylor Expansion technique

    I have been playing around with Taylor expansion to see if I can get anything out but nothing is jumping out at me. So any hints, suggestions and preferably explanations would be greatly appreciated as I’ve spent so so long messing around with it and I need to move on... But as always, thank you
  22. silverfury

    Is There a Trick to Simplify Taylor Series Expansion?

    I tried diffrentiating upto certain higher orders but didn’t find any way.. is there a trick or a transformation involved to make this task less hectic? Pls help
  23. J

    How can I expand this expression in powers of 1/c²?

    As I said before, I really have no idea on how to proceed.
  24. W

    I 1D scattering: Taylor expansion

    Hi all, I'm having a problem understanding a step in an arxiv paper (https://arxiv.org/pdf/0808.3566.pdf) and would like a bit of help. In equation (29) the authors have $$R = \frac{\sigma}{\sqrt{\pi}} \int dk \ e^{-(k - k_0)^2 \sigma^2} \ \Big( \frac{ k - \kappa}{ k+ \kappa} \Big)^2$$ where...
  25. CricK0es

    Derivative of a term within a sum

    Homework Statement [/B] From the Rodrigues’ formulae, I want to derive nature of the spherical Bessel and Neumann functions at small values of p. Homework Equations [/B] I'm going to post an image of the Bessel function where we're using a Taylor expansion, which I'm happy with and is as far...
  26. K

    Mathematical series in physics - Why and when do we need them?

    Hi, Before I post my question, let me admit that my foundation on mathematics is poor. I am trying to work on it, specifically on the application part. When I came through the following image, I was stuck to understand why I will need one like Taylor's series in a simple case like "F+ΔF = F...
  27. U

    A Taylor expansion for a nonlinear system and Picard Iterations

    Hello guys I struggle since yesterday with the following problem I am reading the book "Elements of applied bifurcation theory" by Kuznetsov . At one point he has the following Taylor expansion of a nonlinear system with respect to x=0 where ##x\in \mathbb(R)^n## $$\dot{x} = f(x) = \Lambda x +...
  28. K

    Charge-Dipole Derivation - Assumption That x >> a

    In this derivation: https://cpb-us-e1.wpmucdn.com/sites.northwestern.edu/dist/8/1599/files/2017/06/taylor_series-14rhgdo.pdf they assume in equation (8) that x >> a in order to use the Taylor Expansion because a/x has difficult behavior. Why does that assumption work? Meaning, why can we...
  29. D

    Derivative of expanded function wrt expanded variable?

    Homework Statement If I have the following expansion f(r,t) \approx g(r) + \varepsilon \delta g(r,t) + O(\varepsilon^2) This means for other function U(f(r,t)) U(f(r,t)) = U( g(r) + \varepsilon \delta g(r,t)) \approx U(g) + \varepsilon \delta g \dfrac{dU}{dg} + O(\varepsilon^2) Then up to...
  30. C

    A Questions about the energy of a wave as a Taylor series

    I've read that, in general, the energy of a wave, as opposed to what's commonly taught, isn't strictly related to the square of the amplitude. It can be seen to be related to a Taylor series, where E = ao + a1 A + a2A2 ... Also, that the energy doesn't depend on phase, so only even terms will...
  31. R

    What is the Taylor expansion of x/sin(ax)?

    Hey everyone 1. Homework Statement I want to compute the Taylor expansion (the first four terms) of $$f(x) =x/sin(ax)$$ around $$x_0 = 0$$. I am working in the space of complex numbers here. Homework Equations function: $$f(x) = \frac{x}{\sin (ax)}$$ Taylor expansion: $$ f(x) = \sum...
  32. N

    How can the Taylor expansion of x^x at x=1 be simplified to make solving easier?

    Homework Statement Find the Taylor expansion up to four order of x^x around x=1. Homework EquationsThe Attempt at a Solution I first tried doing this by brute force (evaluating f(1), f'(1), f''(1), etc.), but this become too cumbersome after the first derivative. I then tried writing: $$x^x =...
  33. Adgorn

    I Understanding the Taylor Expansion of a Translated Function

    I recently found out the rule regarding the Taylor expansion of a translated function: ##f(x+h)=f(x)+f′(x)⋅h+\frac 1 2 h^ 2 \cdot f′′(x)+⋯+\frac 1 {n!}h^n \cdot f^n(x)+...## But why exactly is this the case? The normal Taylor expansion tells us that ##f(x)=f(a)+f'(a)(x-a)+\frac 1...
  34. Ahmed Abdalla

    Why do we use Taylor expansion expressing potential energy

    My textbook doesn’t go into it, can someone tell me why Taylor expansion is used to express spring potential energy? A lot of the questions I do I think I can just use F=-Kx and relate it to U(x) being F=-Gradiant U(x) but I see most answers using the Taylor expansion instead to get 1/2 kx^2...
  35. D

    Taylor expansion fine structure

    I have to do a Taylor expansion of the energy levels of Dirac's equation with a coulombian potential in orders of (αZ/n)^2 , but the derivatives I get are just too large, I guess there is another approach maybe? This is the expression of the energy levels And i know it has to end like this:
  36. mertcan

    A Taylor Expansion of Metric Tensor: Troubles & Logic

    Hi, my question is related to taylor expansion of metric tensor, and I have some troubles, I would like to really know that why the RED BOX in my attachment has g_ij (t*x) instead of g_ij(x) ? I really would like to learn the logic...
  37. S

    A Taylor expansion of dispersion relation - plasma physics

    Hello, I may working through attached paper and really need help with deriving equation in appendix - A4 to give A10. http://iopscience.iop.org/article/10.1088/0004-637X/744/2/182/pdf Any help would be greatly appreciated. thanks, Sinéad
  38. mertcan

    I Why is There a Dot Product in the Taylor Expansion of 1/Distance with Vectors?

    Hi, I would like to express that r and r' are vectors in the attachment and let's say that r is observer distance vector r' is source distance vector. By the way I know this is taylor expansion (for instance if there was only x component (scalar form) I would not any ask question ). But I do...
  39. K

    B Why Is My Second Derivative Calculation for Taylor Expansion Incorrect?

    So in the book it says expend function ƒ in ε to get following. ƒ=√ (1 + (α + βε)2) = √ (1 + α2) + (αβε)/√ (1 + α2) + (β2ε2)/2 (1 + α2)3/2 + O(e3) When I expend I get(keeping ε = 0) ƒ(0) = √ (1 + α2) -->first term ƒ'(0) = (αβ)/√ (1 + α2) --> sec term with gets multiplied by ε for third...
  40. Tbonewillsone

    Recovering the delta function with sin⁡(nx)/x

    Homework Statement Ultimately, I would like a expression that is the result of an integral with the sin(nx)/x function, with extra terms from the expansion. This expression would then reconstruct the delta function behaviour as n goes to infty, with the extra terms decaying to zero. I...
  41. Tspirit

    Answering "How to Understand Approximation in QM

    Homework Statement In the Griffiths book <Introduction to QM>, Section 2.3.2: Analytic method (for The harmonic oscillator), there is an equation (##\xi## is very large) $$h(\xi)\approx C\sum\frac{1}{(j/2)!}\xi^{j}\approx C\sum\frac{1}{(j)!}\xi^{2j}\approx Ce^{\xi^{2}}.$$ How to understand the...
  42. J

    I Taylor expansions and integration.

    I have a short doubt: Let f(x) be a fuction that can't be integrated in an analytical way . Is anything wrong if I expand it in a Taylor' series around a point and use this expansion to get the value of the definite integral of the function around that point? Suppose that the interval between...
  43. cg78ithaca

    A Taylor/Maclaurin series for piecewise defined function

    Consider the function: $$F(s) =\begin{cases} A \exp(-as) &\text{ if }0\le s\le s_c \text{ and}\\ B \exp(-bs) &\text{ if } s>s_c \end{cases}$$ The parameter s_c is chosen such that the function is continuous on [0,Inf). I'm trying to come up with a (unique, not piecewise) Maclaurin series...
  44. ATY

    A I need some help with the derivation of fourth order Runge Kutta

    Hey guys, I need your help regarding the derivation of the fourth runge kutta scheme. So, I found http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/lyu_NSSP_Notes/Lyu_NSSP_AppendixC.pdf this derivation. Maybe you have a clue what tehy are doing in C.54. So before this they are calculating the...
  45. Drakkith

    Coefficient for a Term in a Taylor Expansion for Cosine

    Homework Statement The coefficient of the term (x−π)2 in the Taylor expansion for f(x)=cos(x) about x=π is: Homework Equations ##cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!}...## The Attempt at a Solution Unless my taylor series for cosine is incorrect, I'm...
  46. vishal.ng

    A Taylor series expansion of functional

    I'm studying QFT in the path integral formalism, and got stuck in deriving the Schwinger Dyson equation for a real free scalar field, L=½(∂φ)^2 - m^2 φ^2 in the equation, S[φ]=∫ d4x L[φ] ∫ Dφ e^{i S[φ]} φ(x1) φ(x2) = ∫ Dφ e^{i S[φ']} φ'(x1) φ'(x2) Particularly, it is in the Taylor series...
  47. C

    I Convergence of Taylor series in a point implies analyticity

    Suppose that the Taylor series of a function ##f: (a,b) \subset \mathbb{R} \to \mathbb{R}## (with ##f \in C^{\infty}##), centered in a point ##x_0 \in (a,b)## converges to ##f(x)## ##\forall x \in (x_0-r, x_0+r)## with ##r >0##. That is $$f(x)=\sum_{n \geq 0} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n...
  48. Mr Davis 97

    First order term in the taylor expansion of ln(x) abut 1

    Homework Statement What's the first order term in the expansion ln(x) about x = 1? Homework Equations Taylor series formula The Attempt at a Solution The question is multiple choice, and the choices are x, 2x, or (1/2)x. However, when I calculate the first order term in the expansion of ln(x)...
  49. Amara

    Taylor expansion of the relativistic Doppler effect?

    [Note from mentor: this thread was originally posted in a non-homework forum, therefore it does not use the homework template.] I have been given an equation for the relativistic doppler effect but I'm struggling to see this as a function and then give a first order Taylor expansion. Any help...
  50. A

    I Taylor Series: What Is the Significance of the a?

    i watched a lot of videos and read a lot on how to choose it, but i what i can't find anywhere is, what's the physical significance of the a, if we were to draw the series, how will the choice of a affect it?
Back
Top