I asked a similar question yesterday, but I have additional queries, so I'm posting another question. If I pull an object connected to a string with a force of 10N in a straight line for 1 meter, I would have done 10J of work on the object. According to the law of conservation of energy, I would...
I'm sorry my question seems too strange.
The work done by a net force is equal to the change in the kinetic energy of an object.This is very simple, but I suddenly encountered a confusing problem. If you hang an object on a weightless string and apply a force of 10N in a straight line, moving...
In the chapter of center of mass and linear momentum, there are multiple problems involving two block systems connected by a string, with both blocks given certain initial velocities. The goal is to calculate the maximum elongation or compression in the spring.
For example, consider this...
I tried to solve it using the work-energy theorem.The work done to make it stand on its one vertex should be equal to the change in its kinetic energy.
I am confused what will be the value of radius here? I have seen formula of kinetic energy for rolling of circular objects.Can anyone please...
The work-energy theorem is the connection between expressing mechanics taking place in terms of force-and-acceleration, ##F=ma## and representing mechanics taking place in terms of interconversion of kinetic energy and potential energy.
The following statements are for the case that there is a...
Hello physics researchers, teachers and enthusiasts.
I notice one little thing is confusing me in the derivation of Bernoulli's equation in the article, they write:$$dW = dK + dU$$where dW is the work done to the fluid, dK is the change in kinetic energy of the fluid, and dU is the change in...
Its Good to be Back!
From Resnik, Fundamentals of physics: Consider a particle of mass m, moving along an x-axis and acted on by a net force F(x) that is directed along that axis. The work done on the particle by this force as the particle moves from position ##x_i## to position ##x_f## is given...
Guys, I have a problem that really needs you guys to help, I know it is a stupid question but please bear with me:
Context:
You have a block on a slope(has friction) you use a string to pull the block up with constant speed.
Problem:
So according to the network theorem, the work net is equal...
To my mind, there are two distinct approaches to energy problems that different authors tend to use, and I wondered whether either is more fundamental than the other. The first is variations on the work energy theorem, and the second consists of defining a system boundary and setting the change...
See the solved example as shown in the image. I don't understand how can we write S(A)=2S(B) since integrating V(A)=2V(B) will give us an extra unknown constant and the work done by friction will depend on it. I found the relation 2S(B) + S(A) = const. (somebody confirm if this is right?) so...
I read on the Internet that the work done by a (rigid) body = the change in Kinetic energy.
What if I lift a rigid body slowly and vertically by 1 meter above the Earth's surface so that the initial velocity = final velocity =0?
According to the Work Energy theorem as stated on many sites on...
Is there an important difference between total work and external work?
My knowledge would be that total work a.k.a. net work on a system would be equal to the change in kinetic energy of that system and equal to the line integral of the net force on the system dotted with the differential...
Is it confusing to find when is Work done by a force negative or positive? It indeed can be. Learn in this chapter how the dot product of force and displacement can give you the value of work done by the force and also if it is negative or positive
Homework Statement
Question from Fundamentals of Physics (Halliday, Resnick, Walker)
This figure below shows a cord attached to a cart that can slide along a frictionless horizontal rail aligned along an x axis. The left end of the cord is pulled over a pulley, of negligible mass and friction...
1. The Problem Stament, all variables and given data
a 15 kg crate, initially at rest, slides down a ramp 2.0 m long and inclined at an angle of 20 degrees with the horizontal. if there is a constant force of kinetic friction of 25 N between the crate and ramp, what kinetic energy would the...
Homework Statement
Homework EquationsThe Attempt at a Solution
I don't know how to do part 5, I know the point of maximum speed is at an angle of 120 degrees because the work starts to be negative, but how do I find of the maximum speed at that point without using vector integration? (I...
The formula Work done = dot product of Force and displacement. However this assumes a constant force F on a particle. What then is work done by a variable force. Watch this video to understand how integral calculus can help us find the work done when the force acting in a particle is variable.
How can one find the potential energy of a particle. The derivation of PE can be done by the fact that change in PE of a particle is equal to negative of work done by a force on the particle. This combined with Kinetic energy work theorem gives us an equation on conservation of mechanical energy.
Here is problem I quickly made up:
Suppose there is a ramp with a height of 6 meters and length of 12 meters. A block of 5 kg is pushed up to the top of the ramp with a constant velocity. The force of friction is 15 N.
Here's the confusion:
By using the non-conservative force work energy...
Hello,
I am confused about the work energy theorem.
If someone goes up the stairs at a constant velocity, is work being done on the person? After all, Wnet = change in kinetic energy, and that change is zero.
This is the original problem that I am trying to solve, from David Morin's Problems...
Let's consider a setup consisting of a table with friction, and a block on top of it. Suppose we drag the block across the table with a constant speed. The applied force ##f_{app}## acting through a distance ##d## does a work ##f_{app}d##. The frictional force ##\mu N## is equal to ##f_{app}##...
A pendulum of mass m and length l is suspended from the ceiling of a trolley which has a constant acceleration a. Find the maximum deflection θ of the pendulum from the vertical.
When I used work energy theorem, I got θ = 2 arctan(a/g). But when I took the equilibrium position and equated the...
Question: A) Derive the work - energy theorem for one particle.
B) Check whether it is applicable for a system of particles and a rigid bodyWork - energy theorem for one particle system,
total sum of work done by individual forces = work done by total force
To show the above equality,
let's...
Homework Statement
A 2.90 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0360 m . The spring has force constant 860 N/m . The coefficient of kinetic friction between the floor and the block is 0.35 . The block and spring are released from rest...
Homework Statement
A small block is on the point of slipping down a rough ramp inclined at 35 degrees to the horizontal.
a) What is the coefficient of static friction between the block and the ramp?
Answer μ_s = 0.70
b) The ramp is attached to the edge of a 0.8 m high table. After the block is...
1. The problem statement, all variables and given/
You must push a box up an incline plane (the angle being constant : a), to a person waiting to receive it, who is a distance of h(constant) vertically above you. Though the slope is slippery, there is a small amount of friction with kinetic...
Homework Statement
attempt to derive the equation of centripetal acceleration using work energy theorem
Homework Equations
work done = Change in kinetic energy The Attempt at a Solution
consider diametrically opposed points occurring in uniform circular motion - displacement = 2*R and let...
Homework Statement
If two objects of unequal mass and unequal Kinetic energy hit each other, they lose some energy to other forms but keep enough to do Work on each other. A good example is a car and wind, a man and ball could also apply, a ball with KE could stop a running man if KE does work...
why were quantities like momentum, force , potential energy, kinetic energy,work ,etc needed to be introduced in physics?
and why were they defined the way they are defined?.
would it not be possible to explain nature without defining these quantities or by using alternate physical quantities ?
Im sure Imma mess this up, probably because I am really tired...but
I have a bullet that weights .015kg's and is moving at 285m/s, so 609.18J's as with KE.
I hit a 70kg block, penetrates .3048 meters thus exerting 1998.62N's of force, which is a lot of force.
.3048/285m/s so 0.00106 seconds...
Just got confused that while applying the Work - Energy Theorem in a vertical Spring-Block system performing SHM (considering no other external forces other than gravity), when I apply the theorem from equilibrium position, do I consider the work done by gravity?
1. The Question
Unable to find the work done by spring on the object sliding down the rod as shown below:
Homework Equations
Work Done by Spring Force : -1/2 * KΔx2 --(1)
where k = Spring Constant
Δx = Change in Spring Length[/B]
3. Where the problem occurred
While seeing the solution...
Homework Statement
A block of mass ##m## slides down a wedge of mass ##M## and inclination ##\theta## whose surfaces are all frictionless. Find the velocity of the block when it just reaches the bottom of the wedge.
Homework EquationsThe Attempt at a Solution
I was told that to solve this...
1. Homework Statement The Attempt at a Solution
I was wondering if I did something wrong for the 50m. I did the same process of finding the area under the line. I'm assuming it's possible to get the same speed since the net work is the same.[/B]
Homework Statement
Consider a wedge of mass ##m## whose upper surface is a quarter circle and is smooth. The lower part is rough. A small block of same mass is kept at the topmost position and the initial position is shown in figure. The block slides down the wedge.
Find the minimum value of...
Homework Statement
A block of mass ##M = 1 kg## is placed of a fixed rough incline of inclination
##\theta=sin^{-1} \frac{7}{10}## and coefficient of friction ##\mu=\frac{1}{\sqrt{51}}##. It is connected to a spring of spring constant 100 N/m. Initially the spring is in natural state with...
Homework Statement
A rope of uniform mass per unit length ##\lambda## and length ##L## lies curled on a table, with a short length ##\delta l## of it hanging through a hole in the table. At time zero, the rope begins to slide through the hole. At what time ##t_c## (in seconds) does the end of...
Homework Statement
[/B]
A sphere of radius $1m$ and mass $25 Kg$ is put on another sphere of radius $5 m$ and $7 Kg$ which is placed on a smooth ground. Now the upper sphere is pushed very slightly from it's equilibrium position and it begins to fall.
Now when the line joining the centre of...
Homework Statement
A uniform chain of mass m and length l overhangs on a smooth table with two third part lying on the table. Find the kinetic energy of the chain after it slips off the table.
Homework Equations
F=ma
Total work done by all forces = change in kinetic energy
The Attempt at a...
Hi,
I looked around for hours but it seems like I'm the only one who finds it confusing.
I understand the concept of potential energy and work, but have a problem with the equations.
Here is what I don't understand:
The work energy theorem states that K2-K1=W.
W = ∫Fdx from evaluated between...
Homework Statement
So a mass m is placed on a ramp at a height given by h_1. This portion of the trip is frictionless. Then, at the bottom of the ramp the mass encounters a rough patch of levelled ground with a µk given my µ. This strip has a length of size "d" meters. After traveling across...
for a stream line flow of ideal liquid (non-viscous) imcompressible the sum of pressure energy per unit volume kinetic energy per unit volume , potential energy per unit volume remains constant
mathematically
P+1/2roV2+ROGH=constant
consider a fluid flowing in a pipe of various crossections
we...
Mentor's Note: This post and another have been merged at the member's request in order to attach their results.
1. Homework Statement
See the attached picture for the lab setup. It is all about releasing a cart of 1.212 kg attached with a string and hanging masses.
I recorded the Initial and...
The reason why the work energy theorem " ΣW = Δ KE " only includes kinetic and not potential energy, is because gravity undoes the potential energy ? What I mean by "undoes" here is, If you were to, for e.g., lift an apple up a vertical distance, but also accelerate it while lifting it. Then...
Here is the question:
A spring is compressed 20cm. When it is released, it exerts an average force of 57.2 N on a 7.3 kg rock, shooting it across a frictionless floor. Determine the speed of the rock as it leaves the spring.
Homework Equations
W=change in energy
Work energy theorem
W=Fd
The...
Homework Statement
The work-energy theorem relates the change in kinetic energy of a particle to the work done on it by an external force: \triangle K = W = \int F\, dx . Writing Newton's second law as F = \frac{dp}{dt} , show that W = \int v\, dp and integrate by parts using the...
Homework Statement
A dockworker allows a 350-N crate to slide down an incline that is 8 m in length to the deck of a ship 5 m below the dock level. The rough incline exerts a frictional force of 50 N on the crate. (a) What is the speed of the crate as it reaches the deck (b) What is the...
When does the Kinetic Work Energy Theorem not apply to a situation? Or better, is there a general form of the equation where work can equal the change in any energy? What is work besides a force and a distance?
Homework Statement
A small steel ball of mass .0283kg is placed on the end of a plunger of length .0051m attached to a spring 1.88m above the ground. The spring is pre-compressed .0011m and has a spring constant of 177 N/m. The plunger is then angled on a ramp 45° above the horizontal, and is...