- #1
karush
Gold Member
MHB
- 3,269
- 5
given that
$\left[
f(x)=x-2,
\quad
g(x)=\dfrac{x}{x^2+1}\right]$
find $f(g(-2))$
(A) $\dfrac{-11}{5}$
(B) $\dfrac{-4}{17}$
(C) $-3$
(D) $\dfrac{14}{85}$
(E) $\dfrac{-12}{5}$
_____________________________________________________________________________
Solution
find $g(-2)$
$$\dfrac{-2}{(2)^2+1}
=\dfrac{-2}{5}$$
then solve $f(-2/5)$
$$\dfrac{-2}{5}-2
=\dfrac{-2}{5}-\dfrac{10}{5}
=\dfrac{-12}{5}\quad (E)$$
hopefully ok ... typos ... suggestions
is it possible to draw a horizonal line here \hline or \hrule not
also how do you use the hide/show option if you want to hide the solution
$\left[
f(x)=x-2,
\quad
g(x)=\dfrac{x}{x^2+1}\right]$
find $f(g(-2))$
(A) $\dfrac{-11}{5}$
(B) $\dfrac{-4}{17}$
(C) $-3$
(D) $\dfrac{14}{85}$
(E) $\dfrac{-12}{5}$
_____________________________________________________________________________
Solution
find $g(-2)$
$$\dfrac{-2}{(2)^2+1}
=\dfrac{-2}{5}$$
then solve $f(-2/5)$
$$\dfrac{-2}{5}-2
=\dfrac{-2}{5}-\dfrac{10}{5}
=\dfrac{-12}{5}\quad (E)$$
hopefully ok ... typos ... suggestions
is it possible to draw a horizonal line here \hline or \hrule not
also how do you use the hide/show option if you want to hide the solution