- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{213(DOY)}$
$\displaystyle\int \sec x \tan x \: dx =$
(A) $\sec x + C$
(B) $\tan x + C$
(C) $\dfrac{\sec^2 x}{2}+ C$
(D) $\dfrac {tan^2 x}{2}+C $
(E) $\dfrac{\sec^2 x \tan^2 x }{2}+ C$
$\displaystyle\int \sec x \tan x \: dx =$
(A) $\sec x + C$
(B) $\tan x + C$
(C) $\dfrac{\sec^2 x}{2}+ C$
(D) $\dfrac {tan^2 x}{2}+C $
(E) $\dfrac{\sec^2 x \tan^2 x }{2}+ C$
$(\sec x)'=\sec x \tan x$ so the answer is $\sec x +C$ (A)
Last edited: