- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{Find the sum of the series}\\$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}
\frac{4}{(4n-1)(4n+3)}=\color{red}{\frac{1}{3}} \\
\end{align*}
$\textsf{expand rational expression } $
\begin{align*}\displaystyle
\frac{4}{(4n-1)(4n+3)}
&=\frac{A}{(4n-1)}+\frac{B}{(4n+3)}\\
4&=A(4n+3)+B(4n-1)\\
\end{align*}
$\textit{if $\displaystyle n=-\frac{3}{4}$ then: }$
\begin{align*}\displaystyle
4&=-2B \therefore B=-1\\
\end{align*}
$\textit{if $\displaystyle n=\frac{3}{4}$ then: }$
\begin{align*}\displaystyle
4&=4A \therefore A=1\\
\end{align*}
$\textit{then}$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}
\left[\frac{1}{(4n-1)}- \frac{1}{(4n+3)}\right]\\
\end{align*}
$\textit{partial sum $S_k$}$
\begin{align*}\displaystyle
&=\left[ \frac{1}{3}-\frac{1}{7} \right]
+\left[ \frac{1}{7}-\frac{1}{11} \right]
+\left[ \frac{1}{11}-\frac{1}{15} \right]
+ \cdots +
\end{align*}
$\textit{got lost here}$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}
\frac{4}{(4n-1)(4n+3)}=\color{red}{\frac{1}{3}} \\
\end{align*}
$\textsf{expand rational expression } $
\begin{align*}\displaystyle
\frac{4}{(4n-1)(4n+3)}
&=\frac{A}{(4n-1)}+\frac{B}{(4n+3)}\\
4&=A(4n+3)+B(4n-1)\\
\end{align*}
$\textit{if $\displaystyle n=-\frac{3}{4}$ then: }$
\begin{align*}\displaystyle
4&=-2B \therefore B=-1\\
\end{align*}
$\textit{if $\displaystyle n=\frac{3}{4}$ then: }$
\begin{align*}\displaystyle
4&=4A \therefore A=1\\
\end{align*}
$\textit{then}$
\begin{align*}\displaystyle
S_{n}&=\sum_{n=1}^{\infty}
\left[\frac{1}{(4n-1)}- \frac{1}{(4n+3)}\right]\\
\end{align*}
$\textit{partial sum $S_k$}$
\begin{align*}\displaystyle
&=\left[ \frac{1}{3}-\frac{1}{7} \right]
+\left[ \frac{1}{7}-\frac{1}{11} \right]
+\left[ \frac{1}{11}-\frac{1}{15} \right]
+ \cdots +
\end{align*}
$\textit{got lost here}$
Last edited: