11. 1.33-T nth order Taylor polynomials - - centered at a=100, n=0

In summary, the nth order Taylor polynomials for the given function are:f(x)=-\frac{1}{4x^{3/2}}f(100)=\frac{1}{20}f(x)=\sqrt{x}P_0(x)=10P_1(x)=\frac{1}{20}(x-100)+10P_2(x)=-\frac{1}{8000}(x-100)^2+\frac{1}{20}(x-100)+10
  • #1
karush
Gold Member
MHB
3,269
5
$\tiny {11. 1.33-T} $
$\textsf{Find the nth order Taylor polynomials of the given function centered at a=100, for $n=0, 1, 2.$}\\$
$$\displaystyle f(x)=\sqrt{x}$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}
\frac{f^{(k)}\left(a\right)}{k!}(x-a)^k$$
$\textsf{n=0}\\$
\begin{align}
f^0(x)&= \displaystyle f(x)=\sqrt{x}
\therefore f^0(100)=10\\
P_0\left(x\right)&=\frac{f^0(100)}{0!}(x-100)^{0}= 10
\end{align}
$\textit{just seeing if this is correct 🍮}$
 
Physics news on Phys.org
  • #2
karush said:
$\tiny {11. 1.33-T} $
$\textsf{Find the nth order Taylor polynomials of the given function centered at a=100, for $n=0, 1, 2.$}\\$
$$\displaystyle f(x)=\sqrt{x}$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}
\frac{f^{(k)}\left(a\right)}{k!}(x-a)^k$$
$\textsf{n=0}\\$
\begin{align}
f^0(x)&= \displaystyle f(x)=\sqrt{x}
\therefore f^0(100)=10\\
P_0\left(x\right)&=\frac{f^0(100)}{0!}(x-100)^{0}= 10
\end{align}
$\textit{just seeing if this is correct 🍮}$

It's correct for P0, now you need P1 and P2...
 
  • #3
$\tiny {11. 1.33-T} $
$\textsf{Find the nth order Taylor polynomials of the given function centered at a=100, for $n=0, 1, 2.$}\\$
$$\displaystyle f(x)=\sqrt{x}$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}
\frac{f^{(k)}\left(a\right)}{k!}(x-a)^k$$
$\textsf{n=0}\\$
\begin{align}
f^0(x)&= \displaystyle f(x)=\sqrt{x}
\therefore f^0(100)=10\\
P_0\left(x\right)&=\frac{f^0(100)}{0!}(x-100)^{0}= 10
\end{align}
$\textsf{n=1}\\$
\begin{align}
f^1(x)&= \displaystyle f(x)=\frac{1}{2\sqrt{x}}
\therefore f^1(100)=\frac{1}{20}\\
P_0\left(x\right)&=\frac{f^1(100)}{1!}(x-100)^{1}
= \frac{1}{20}(x-100)
\end{align}
$\textsf{n=2}\\$
\begin{align}
f^2(x)&= \displaystyle f(x)=-\frac{1}{4x^{3/2}}
\therefore f^2(100)=\frac{1}{4000}\\
P_0\left(x\right)&=\frac{f^2(100)}{2!}(x-100)^{2}
= \frac{1}{8000}(x-100)^2
\end{align}
$\textsf{so finally}\\$
$$\sqrt{x}
\approx 10 + \frac{1}{20}(x-100)-\frac{1}{8000}(x-100)^2$$

$\textit{suggestions}$☕
 
Last edited:
  • #4
I think you are misusing the notation "\(\displaystyle P_n(x)\)". Yes, [tex]P_0(x)= 10[/tex] because f(100)= 10. And the next term in the Taylor's expansion is \(\displaystyle \frac{1}{20}\) so that [tex]P_1(x)= \frac{1}{20}(x- 100)+ 10[/tex]. Then the next term is \(\displaystyle -\frac{1}{8000}(x- 100)^2\) so \(\displaystyle [tex]P_2(x)= -\frac{1}{8000}(x- 100)^2+ \frac{1}{20}(x- 100)+ 10\).
 
  • #5
$\tiny {11. 1.33-T} $
$\textsf{Find the nth order Taylor polynomials of the given function centered at a=100, for $n=0, 1, 2.$}\\$
$$\displaystyle f(x)=\sqrt{x}$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}
\frac{f^{(k)}\left(a\right)}{k!}(x-a)^k$$
$\textsf{n=0}\\$
\begin{align}
f^0(x)&= \displaystyle f(x)=\sqrt{x}
\therefore f^0(100)=10\\
P_0\left(x\right)&=\frac{f^0(100)}{0!}(x-100)^{0}= 10
\end{align}
$\textsf{n=1}\\$
\begin{align}
f^1(x)&= \displaystyle f(x)=\frac{1}{2\sqrt{x}}
\therefore f^1(100)=\frac{1}{20}\\
P_1\left(x\right)&=\frac{f^1(100)}{1!}(x-100)^{1}
= \frac{1}{20}(x-100)+10
\end{align}
$\textsf{n=2}\\$
\begin{align}
f^2(x)&= \displaystyle f(x)=-\frac{1}{4x^{3/2}}
\therefore f^2(100)=\frac{1}{4000}\\
P_2\left(x\right)&=\frac{f^2(100)}{2!}(x-100)^{2}
= \frac{1}{8000}(x-100)^2+\frac{1}{20}(x-100)+10
\end{align}

$\textit{so would this be 'example' ready?}$😎
 

Related to 11. 1.33-T nth order Taylor polynomials - - centered at a=100, n=0

1. What is a Taylor polynomial?

A Taylor polynomial is a mathematical expression used to approximate a function at a specific point. It is a sum of terms, each of which is a multiple of the function's derivatives evaluated at that point.

2. What does "nth order" mean in relation to Taylor polynomials?

The "nth order" refers to the highest degree of the derivatives used in the Taylor polynomial. For example, a 2nd order Taylor polynomial would include the first and second derivatives of the function.

3. How is the center of a Taylor polynomial determined?

The center of a Taylor polynomial is determined by the value (a) at which the function is evaluated. In this case, the center is at a=100.

4. What is the significance of the value of n in the Taylor polynomial?

The value of n represents the number of derivatives used in the Taylor polynomial. As n increases, the accuracy of the polynomial in approximating the function also increases.

5. How is a Taylor polynomial different from a Maclaurin series?

A Taylor polynomial is a generalization of a Maclaurin series, which is a special type of Taylor polynomial centered at 0. A Maclaurin series only uses non-negative integer powers of the variable, while a Taylor polynomial can use any real number powers.

Similar threads

Replies
3
Views
2K
  • Calculus
Replies
2
Views
1K
Replies
11
Views
2K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
3
Views
2K
Back
Top