- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny {11. 1.33-T} $
$\textsf{Find the nth order Taylor polynomials of the given function centered at a=100, for $n=0, 1, 2.$}\\$
$$\displaystyle f(x)=\sqrt{x}$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}
\frac{f^{(k)}\left(a\right)}{k!}(x-a)^k$$
$\textsf{n=0}\\$
\begin{align}
f^0(x)&= \displaystyle f(x)=\sqrt{x}
\therefore f^0(100)=10\\
P_0\left(x\right)&=\frac{f^0(100)}{0!}(x-100)^{0}= 10
\end{align}
$\textit{just seeing if this is correct }$
$\textsf{Find the nth order Taylor polynomials of the given function centered at a=100, for $n=0, 1, 2.$}\\$
$$\displaystyle f(x)=\sqrt{x}$$
$\textsf{using}\\$
$$P_n\left(x\right)
\approx\sum\limits_{k=0}^{n}
\frac{f^{(k)}\left(a\right)}{k!}(x-a)^k$$
$\textsf{n=0}\\$
\begin{align}
f^0(x)&= \displaystyle f(x)=\sqrt{x}
\therefore f^0(100)=10\\
P_0\left(x\right)&=\frac{f^0(100)}{0!}(x-100)^{0}= 10
\end{align}
$\textit{just seeing if this is correct }$