- #1
karush
Gold Member
MHB
- 3,269
- 5
Use the Ratio Test to determine whether the series is convergent or divergent
$$\sum_{n=1}^{\infty}\dfrac{(-2)^n}{n^2}$$
If $\displaystyle\lim_{n \to \infty}
\left|\dfrac{a_{n+1}}{a_n}\right|=L>1
\textit{ or }
\left|\dfrac{a_{n+1}}{a_n}\right|=\infty
\textit{ then the series } \sum_{n=1}^{\infty}a_n \textit{ is divergent}$
ok I spent about half hour trying to do this but not sure what a is
also this one if can...
$$\sum_{n=1}^{\infty} \frac{(2n)!}{9^n n!}$$
$$\sum_{n=1}^{\infty}\dfrac{(-2)^n}{n^2}$$
If $\displaystyle\lim_{n \to \infty}
\left|\dfrac{a_{n+1}}{a_n}\right|=L>1
\textit{ or }
\left|\dfrac{a_{n+1}}{a_n}\right|=\infty
\textit{ then the series } \sum_{n=1}^{\infty}a_n \textit{ is divergent}$
ok I spent about half hour trying to do this but not sure what a is
also this one if can...
$$\sum_{n=1}^{\infty} \frac{(2n)!}{9^n n!}$$