- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{Find the area of the triangle determined by the points }$
\begin{align*}\displaystyle
&P(1,1,1), \, Q(-2,-7,-1), \, R(-7,-1,4)\\
\end{align*}
\begin{align*}\displaystyle
\vec{PQ}&=(-2-1)i&+(-7-1)J&+(-1-1)k&=-3i-8j-2k\\
\vec{PR}&=(-7-1)i&+(-1-1)j&+(4-1) k&=-8i-2j-3k
\end{align*}
\begin{align*}\displaystyle
\vec{PQ} \times \vec{PR}&=
\begin{vmatrix}
i&j&k\\-3&-8&-2\\-8&-2&3
\end{vmatrix}\\
&=
\begin{vmatrix}
-8&-2\\-2&3
\end{vmatrix}i-
\begin{vmatrix}
-3&-2\\-8&3
\end{vmatrix}j-
\begin{vmatrix}
-3&-8\\-8&-2
\end{vmatrix}k\\
&=(-24-4)i-(-9-16)j+(6-64)k\\
&=-28i+25j-58k\\
&=\sqrt{28^2 + 25^2 + 58^2}\\
&=\sqrt{4773}
\end{align*}
$\textit{divide by half to obtain area of triangle}$
$\displaystyle \frac{\sqrt{4773}}{2}$
I just followed an example but was unsure about the signs in between matrix
and suggestions ?
View attachment 7309
\begin{align*}\displaystyle
&P(1,1,1), \, Q(-2,-7,-1), \, R(-7,-1,4)\\
\end{align*}
\begin{align*}\displaystyle
\vec{PQ}&=(-2-1)i&+(-7-1)J&+(-1-1)k&=-3i-8j-2k\\
\vec{PR}&=(-7-1)i&+(-1-1)j&+(4-1) k&=-8i-2j-3k
\end{align*}
\begin{align*}\displaystyle
\vec{PQ} \times \vec{PR}&=
\begin{vmatrix}
i&j&k\\-3&-8&-2\\-8&-2&3
\end{vmatrix}\\
&=
\begin{vmatrix}
-8&-2\\-2&3
\end{vmatrix}i-
\begin{vmatrix}
-3&-2\\-8&3
\end{vmatrix}j-
\begin{vmatrix}
-3&-8\\-8&-2
\end{vmatrix}k\\
&=(-24-4)i-(-9-16)j+(6-64)k\\
&=-28i+25j-58k\\
&=\sqrt{28^2 + 25^2 + 58^2}\\
&=\sqrt{4773}
\end{align*}
$\textit{divide by half to obtain area of triangle}$
$\displaystyle \frac{\sqrt{4773}}{2}$
I just followed an example but was unsure about the signs in between matrix
and suggestions ?
View attachment 7309