- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textit{$13.4.7$ Find the curvature of the curve $r(t).$}$
\begin{align*}\displaystyle
r(t)&=(5+9 \cos 8t) i - (4 + 9 \sin 8t)j + 6k\\
v&= -72\sin(8t)+72\cos(8t)\\
|v|&=\sqrt{(-72\sin(8t))^2 +(72\cos(8t))^2}\\
&=5184\\
\frac{v}{|v|}&=\frac{-72\sin(8t)+72\cos(8t)}{5184}\\
K&=\frac{1}{|v|}\left|\frac{d\textbf{T}}{dr}\right|
\end{align*}ok the answer is $\displaystyle k=\frac{1}{9}$
but got lost in this process
\begin{align*}\displaystyle
r(t)&=(5+9 \cos 8t) i - (4 + 9 \sin 8t)j + 6k\\
v&= -72\sin(8t)+72\cos(8t)\\
|v|&=\sqrt{(-72\sin(8t))^2 +(72\cos(8t))^2}\\
&=5184\\
\frac{v}{|v|}&=\frac{-72\sin(8t)+72\cos(8t)}{5184}\\
K&=\frac{1}{|v|}\left|\frac{d\textbf{T}}{dr}\right|
\end{align*}ok the answer is $\displaystyle k=\frac{1}{9}$
but got lost in this process