- #1
karush
Gold Member
MHB
- 3,269
- 5
For the matrix
$A=\left[\begin{array}{rrrrr}
1&0&0&4&5\\
0&1&0&3&2\\
0&0&1&3&2\\
0&0&0&0&0\end{array}\right]$
Find a basis for NS(A) and $\dim{NS(A)}$
$\left[\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{array}\right]=
\left[\begin{array}{c}
-4x_4-5x_5\\
-3x_4-2x_5\\
-3x_4-2x_5\\
x_4\\
x_5
\end{array}\right]$
ok I just did this but there is duplication in it
$A=\left[\begin{array}{rrrrr}
1&0&0&4&5\\
0&1&0&3&2\\
0&0&1&3&2\\
0&0&0&0&0\end{array}\right]$
Find a basis for NS(A) and $\dim{NS(A)}$
$\left[\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{array}\right]=
\left[\begin{array}{c}
-4x_4-5x_5\\
-3x_4-2x_5\\
-3x_4-2x_5\\
x_4\\
x_5
\end{array}\right]$
ok I just did this but there is duplication in it