- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{A thin rectangular plate, represented by a region $R$ in the xy-plane}\\$
$\textsf{has a density given by the function p(x,y);}\\$
$\textsf{This function gives the area density in units such as $g/cm^2$}\\$
$\textsf{The mass of the plate is $\displaystyle\iint\limits_{R}p(x,y)dA$}\\$
$\textsf{Assume that $R=[(x,y): 0 \le x \le \frac{\pi}{2}, \, 0 \le y \le \pi]$}\\$
$\textsf{and find the mass of the plates with the following density functions}\\$
$\textit{a. $p(x,y)=10+\sin{x}$ (will do this one first)}\\$
\begin{align*}\displaystyle
M&=\int_0^\pi \int_0^{\frac{\pi}{2}} 10+\sin{x} \, dx\\
&=\int_0^\pi
\left[10x-\cos\left(x\right)\right]_0^{\frac{\pi}{2}} \, dy\\
&=\int_0^\pi 5{\pi}+1 \, dy\\
\end{align*}
hopefully so far ?
$\textit{b. $p(x,y)=10+\sin{y}$(this plotted outside the limits ?)}\\$
$\textit{c. $p(x,y)=10+\sin{x}\sin{y}$ (I tried to plot this in desmos but ?)}\\$
$\textsf{has a density given by the function p(x,y);}\\$
$\textsf{This function gives the area density in units such as $g/cm^2$}\\$
$\textsf{The mass of the plate is $\displaystyle\iint\limits_{R}p(x,y)dA$}\\$
$\textsf{Assume that $R=[(x,y): 0 \le x \le \frac{\pi}{2}, \, 0 \le y \le \pi]$}\\$
$\textsf{and find the mass of the plates with the following density functions}\\$
$\textit{a. $p(x,y)=10+\sin{x}$ (will do this one first)}\\$
\begin{align*}\displaystyle
M&=\int_0^\pi \int_0^{\frac{\pi}{2}} 10+\sin{x} \, dx\\
&=\int_0^\pi
\left[10x-\cos\left(x\right)\right]_0^{\frac{\pi}{2}} \, dy\\
&=\int_0^\pi 5{\pi}+1 \, dy\\
\end{align*}
hopefully so far ?
$\textit{b. $p(x,y)=10+\sin{y}$(this plotted outside the limits ?)}\\$
$\textit{c. $p(x,y)=10+\sin{x}\sin{y}$ (I tried to plot this in desmos but ?)}\\$