- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{ Evaluate the following integral }$
$\textsf{where $R$ is the is the region in $Q1$ & $Q4$}$
$\textsf{bounded by the semicircle of radius 2 centered at (0,0).}\\$
\begin{align*}\displaystyle
I&=\iint\limits_{R} x^4 y \, dA
\end{align*}
how can this produce a semicircle?
$\textsf{where $R$ is the is the region in $Q1$ & $Q4$}$
$\textsf{bounded by the semicircle of radius 2 centered at (0,0).}\\$
\begin{align*}\displaystyle
I&=\iint\limits_{R} x^4 y \, dA
\end{align*}
how can this produce a semicircle?