- #1
karush
Gold Member
MHB
- 3,269
- 5
\begin{align*}\displaystyle
\int_{\alpha}^{\beta}\int_{a}^{\infty}
g(r,\theta) \, rdr\theta
=\lim_{b \to \infty}
\int_{\alpha}^{\beta}\int_{a}^{b}g(r,\theta)rdrd\theta
\end{align*}
$\textit{Evaluate the Given}$
\begin{align*}\displaystyle
&=\iint\limits_{R} e^{-x^2-y^2} \, dA \\
(r,\theta) \, 2 \le r \le \infty \\
&\, 0 \le \theta \le \pi/2
\end{align*}$\textit{Rewrite with limits}$
\begin{align*}\displaystyle
&\lim_{b \to \infty}\int_{0}^{\pi/2}\int_2^{\infty} e^{-x^2-y^2} rdrd\theta
\end{align*}
just seeing if I'm going in the right direction
\int_{\alpha}^{\beta}\int_{a}^{\infty}
g(r,\theta) \, rdr\theta
=\lim_{b \to \infty}
\int_{\alpha}^{\beta}\int_{a}^{b}g(r,\theta)rdrd\theta
\end{align*}
$\textit{Evaluate the Given}$
\begin{align*}\displaystyle
&=\iint\limits_{R} e^{-x^2-y^2} \, dA \\
(r,\theta) \, 2 \le r \le \infty \\
&\, 0 \le \theta \le \pi/2
\end{align*}$\textit{Rewrite with limits}$
\begin{align*}\displaystyle
&\lim_{b \to \infty}\int_{0}^{\pi/2}\int_2^{\infty} e^{-x^2-y^2} rdrd\theta
\end{align*}
just seeing if I'm going in the right direction
Last edited: