- #1
karush
Gold Member
MHB
- 3,269
- 5
nmh{742}
For the matrix
$$\begin{bmatrix}
1 & 0 &0 & 4 &5\\
0 & 1 & 0 & 3 &2\\
0 & 0 & 1 & 3 &2\\
0 & 0 & 0 & 0 &0
\end{bmatrix}$$
(a) find a basis for RS(A)
ok this is already in rref and we have 3 pivots in $C_1,C_2,C_3$
so is $$RS(A)= \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}
, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}
, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$
(b) derive dim(RS(A))
(c) Verify that dim(NS(A))+Rank(A)=5.
For the matrix
$$\begin{bmatrix}
1 & 0 &0 & 4 &5\\
0 & 1 & 0 & 3 &2\\
0 & 0 & 1 & 3 &2\\
0 & 0 & 0 & 0 &0
\end{bmatrix}$$
(a) find a basis for RS(A)
ok this is already in rref and we have 3 pivots in $C_1,C_2,C_3$
so is $$RS(A)= \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}
, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}
, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$$
(b) derive dim(RS(A))
(c) Verify that dim(NS(A))+Rank(A)=5.
Last edited: