- #1
karush
Gold Member
MHB
- 3,269
- 5
Write interated integrals in spherical coordinates
for the following region in the orders
$dp \, d\theta \, d\phi$
and
$d\theta \, dp \, d\phi$
Sketch the region of integration. Assume that $f$ is continuous on the region
\begin{align*}\displaystyle
I_{63}&=\int_{0}^{2\pi}\int_{\pi/6}^{\pi/2}\int_{2\csc{\phi}}^{4}
f(\rho,\phi,\theta)\rho^2
\,d\rho \,d\phi \,d\theta\\
\end{align*}
The standard equation of Sphere is:
\begin{align*}\displaystyle
f(\rho,\phi,\theta)
&=(\rho - \rho_0)^2 + (\phi - \phi_0)^2 + (\theta - \theta_0)^2 = \alpha ^2
\end{align*}
ok kinda ? what the $\rho^2$ would do to this
ok assume the new iterated sets would be according to d? set.
this was the pick for the graph I just picked bView attachment 7314
for the following region in the orders
$dp \, d\theta \, d\phi$
and
$d\theta \, dp \, d\phi$
Sketch the region of integration. Assume that $f$ is continuous on the region
\begin{align*}\displaystyle
I_{63}&=\int_{0}^{2\pi}\int_{\pi/6}^{\pi/2}\int_{2\csc{\phi}}^{4}
f(\rho,\phi,\theta)\rho^2
\,d\rho \,d\phi \,d\theta\\
\end{align*}
The standard equation of Sphere is:
\begin{align*}\displaystyle
f(\rho,\phi,\theta)
&=(\rho - \rho_0)^2 + (\phi - \phi_0)^2 + (\theta - \theta_0)^2 = \alpha ^2
\end{align*}
ok kinda ? what the $\rho^2$ would do to this
ok assume the new iterated sets would be according to d? set.
this was the pick for the graph I just picked bView attachment 7314