- #1
karush
Gold Member
MHB
- 3,269
- 5
Find the general solution to the system of differential equations
$\begin{cases}
y'_1&=2y_1+y_2-y_3 \\
y'_2&=3y_2+y_3\\
y'_3&=3y_3
\end{cases}$
let
$y(t)=\begin{bmatrix}{y_1(t)\\y_2(t)\\y_3(t)}\end{bmatrix}
,\quad A=\begin{bmatrix}
2 & 1 & -1 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{bmatrix}$
so
\begin{align*}\displaystyle
y_1&=c_1e^{2t}+c_2e^{t}+c_3e^{-t}\\
y_2&=c_2e^{3t}+c_3e^{t}\\
y_3&=c_3e^{3t}
\end{align*}
ok if correct so far assume next step is to diagonalize $A:\quad A=PDP^{-1}$
well according to EMH this is not diagonalizable but is look like a triangle
so would this be
$\begin{pmatrix} y'_1 \\ y'_2 \\ y'_3 \end{pmatrix}
= \begin{pmatrix} 2y_1&+y_2&-y_3 \\
0&3y_2&y_3\\
0&0&3y_3 \end{pmatrix}
\cdot
\begin{pmatrix} x \\ y \\ z \end{pmatrix}
+ \begin{pmatrix} b_1(t) \\ b_2(t) \\ b_3(t) \end{pmatrix}$
$\begin{cases}
y'_1&=2y_1+y_2-y_3 \\
y'_2&=3y_2+y_3\\
y'_3&=3y_3
\end{cases}$
let
$y(t)=\begin{bmatrix}{y_1(t)\\y_2(t)\\y_3(t)}\end{bmatrix}
,\quad A=\begin{bmatrix}
2 & 1 & -1 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{bmatrix}$
so
\begin{align*}\displaystyle
y_1&=c_1e^{2t}+c_2e^{t}+c_3e^{-t}\\
y_2&=c_2e^{3t}+c_3e^{t}\\
y_3&=c_3e^{3t}
\end{align*}
ok if correct so far assume next step is to diagonalize $A:\quad A=PDP^{-1}$
well according to EMH this is not diagonalizable but is look like a triangle
so would this be
$\begin{pmatrix} y'_1 \\ y'_2 \\ y'_3 \end{pmatrix}
= \begin{pmatrix} 2y_1&+y_2&-y_3 \\
0&3y_2&y_3\\
0&0&3y_3 \end{pmatrix}
\cdot
\begin{pmatrix} x \\ y \\ z \end{pmatrix}
+ \begin{pmatrix} b_1(t) \\ b_2(t) \\ b_3(t) \end{pmatrix}$
Last edited: