- #1
karush
Gold Member
MHB
- 3,269
- 5
nmh{2000}
17.1 Let $T: \Bbb{R}^2 \to \Bbb{R}^2$ be defined by
$$T \begin{bmatrix}
x\\y
\end{bmatrix}
=
\begin{bmatrix}
2x+y\\x-4y
\end{bmatrix}$$
Determine if $T$ is a linear transformation. So if
$$T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$$
Let $\vec{x}$ and $\vec{y}$ be vectors in $\Bbb{R}^2$ then we can write them as
$$\vec{x}
=\begin{bmatrix}
x_1\\x_2
\end{bmatrix}
, \vec{y}
=\begin{bmatrix}
y_1\\y_2
\end{bmatrix}$$
By definition, we have that
$$T(\vec{x}+\vec{y})
=\begin{bmatrix}
x_1+y_1 \\
x_2+y_2
\end{bmatrix}
=\begin{bmatrix}
2(x_1+y_1)+x_2+y_2\\
x_1+y_1-4(x_2+y_2)
\end{bmatrix}$$
OK just seeing if this is developing as it should
hopefully the next few steps will be an addition property
and this is a linear transformation
17.1 Let $T: \Bbb{R}^2 \to \Bbb{R}^2$ be defined by
$$T \begin{bmatrix}
x\\y
\end{bmatrix}
=
\begin{bmatrix}
2x+y\\x-4y
\end{bmatrix}$$
Determine if $T$ is a linear transformation. So if
$$T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})$$
Let $\vec{x}$ and $\vec{y}$ be vectors in $\Bbb{R}^2$ then we can write them as
$$\vec{x}
=\begin{bmatrix}
x_1\\x_2
\end{bmatrix}
, \vec{y}
=\begin{bmatrix}
y_1\\y_2
\end{bmatrix}$$
By definition, we have that
$$T(\vec{x}+\vec{y})
=\begin{bmatrix}
x_1+y_1 \\
x_2+y_2
\end{bmatrix}
=\begin{bmatrix}
2(x_1+y_1)+x_2+y_2\\
x_1+y_1-4(x_2+y_2)
\end{bmatrix}$$
OK just seeing if this is developing as it should
hopefully the next few steps will be an addition property
and this is a linear transformation
Last edited: