- #1
ognik
- 643
- 2
Hi - I know the final result for the n'th derivative, I am looking though at getting an expression for the 1st derivative of f(z).
From $ f({z}_{0}) = \frac{1}{2\pi i} \oint_{c} \frac{f(z)}{z - {z}_{0}}dz $ we get
$ \frac{f({z}_{0} + \delta {z}_{0}) -{f({z}_{0}}) }{\delta {z}_{0}} =
\frac{1}{2\pi i \delta {z}_{0} } (\oint_{c} \frac{f(z)}{z - {z}_{0} - \delta {z}_{0} } dz - \oint_{c} \frac{f({z}_{0})}{z - {z}_{0}}dz ) $
Where does the 2nd integral on the right come from?
From $ f({z}_{0}) = \frac{1}{2\pi i} \oint_{c} \frac{f(z)}{z - {z}_{0}}dz $ we get
$ \frac{f({z}_{0} + \delta {z}_{0}) -{f({z}_{0}}) }{\delta {z}_{0}} =
\frac{1}{2\pi i \delta {z}_{0} } (\oint_{c} \frac{f(z)}{z - {z}_{0} - \delta {z}_{0} } dz - \oint_{c} \frac{f({z}_{0})}{z - {z}_{0}}dz ) $
Where does the 2nd integral on the right come from?