- #1
karush
Gold Member
MHB
- 3,269
- 5
[a] Find the general solution of $y^\prime + 3y=t+e^{-2x}\quad \dfrac{dy}{dx}+f(x)y=g(x)$
\$\begin{array}{lll}
\textsf{Similarly} & \dfrac{dy}{dx}+Py=Q\\
\textsf{hence} & \mu(x)=\exp\left(\int f(x)\,dx\right)\\
\textsf{then} & \mu^\prime(x)=\exp\left(\int f(x)\,dx\right)f(x) \\
\textsf{then} & \mu(x)+y'=\mu(x)g(x)\\
\textsf{integrating factor} & \mu(x)=e^{3x}\\
\textsf{multiplying} & e^{3x}y'+3e^{3x}y=xe^{3x}+e^{x}\\
\textsf{rewriting the LHS} & \dfrac{d}{dx}\left(e^{3x}y\right)=xe^{3x}+e^{x}\\
\end{array}$
determine how the solution behave as $t \to \infty$
$ce^{-3x}+\dfrac{x}{3}-\dfrac{1}{9}+e^{-2x}$
y is asymptotic to $\dfrac{t}{3} −\dfrac{1}{9} \textit{ as } t \to \infty$
ok i think this is correct just could be worded better
maybe some typos
suggestions, complaints, or ?
\$\begin{array}{lll}
\textsf{Similarly} & \dfrac{dy}{dx}+Py=Q\\
\textsf{hence} & \mu(x)=\exp\left(\int f(x)\,dx\right)\\
\textsf{then} & \mu^\prime(x)=\exp\left(\int f(x)\,dx\right)f(x) \\
\textsf{then} & \mu(x)+y'=\mu(x)g(x)\\
\textsf{integrating factor} & \mu(x)=e^{3x}\\
\textsf{multiplying} & e^{3x}y'+3e^{3x}y=xe^{3x}+e^{x}\\
\textsf{rewriting the LHS} & \dfrac{d}{dx}\left(e^{3x}y\right)=xe^{3x}+e^{x}\\
\end{array}$
determine how the solution behave as $t \to \infty$
$ce^{-3x}+\dfrac{x}{3}-\dfrac{1}{9}+e^{-2x}$
y is asymptotic to $\dfrac{t}{3} −\dfrac{1}{9} \textit{ as } t \to \infty$
ok i think this is correct just could be worded better
maybe some typos
suggestions, complaints, or ?
Last edited: