- #1
karush
Gold Member
MHB
- 3,269
- 5
Find the general solution of the given differential equation
$\displaystyle ty^\prime -y =t^2e^{-1}\\$
Divide thru by t
$\displaystyle y^\prime-\frac{y}{t}=te^{-1}\\$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -\frac{1}{t} \, dt =\frac{1}{t}\\$
Multiply thru with $\displaystyle\frac{1}{t}$
$\displaystyle y^\prime -\frac{1}{t}y =te^{-1}\\$
Simplify:
$(\frac{1}{t}y)'=te^{-1} \\$
ok got stuck here so...
Answer from bk
$\displaystyle
\color{red}{y=c_1 -te^{-1}}$ (this is wrong)
$$\tiny\textsf{Text Book: Elementary Differential Equations and Boundary Value disappearProblems}$$
$\displaystyle ty^\prime -y =t^2e^{-1}\\$
Divide thru by t
$\displaystyle y^\prime-\frac{y}{t}=te^{-1}\\$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -\frac{1}{t} \, dt =\frac{1}{t}\\$
Multiply thru with $\displaystyle\frac{1}{t}$
$\displaystyle y^\prime -\frac{1}{t}y =te^{-1}\\$
Simplify:
$(\frac{1}{t}y)'=te^{-1} \\$
ok got stuck here so...
Answer from bk
$\displaystyle
\color{red}{y=c_1 -te^{-1}}$ (this is wrong)
$$\tiny\textsf{Text Book: Elementary Differential Equations and Boundary Value disappearProblems}$$
Last edited: