- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{2.1.{13}}$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ t^{-1}}$$
$\textit{multiply thru with $e^{ t^{-1}}$} $
$$ e^{ t^{-1}}y'- e^{ t^{-1}}y=2te^{t}$$
ok this isn't uv'+u'v
$\textit{W|A}$
$$\color{red}{c_1e^t+2e^{2t}t-2e^{2t}}$$
$\textsf{Find the solution of the given initial value problem}$
$$y'-y=2te^{2t}, \quad y(0)=1$$
$\textit{Find u(x)}$
$$\displaystyle\exp\int -1 dt =e^{ t^{-1}}$$
$\textit{multiply thru with $e^{ t^{-1}}$} $
$$ e^{ t^{-1}}y'- e^{ t^{-1}}y=2te^{t}$$
ok this isn't uv'+u'v
$\textit{W|A}$
$$\color{red}{c_1e^t+2e^{2t}t-2e^{2t}}$$
Last edited: