- #1
karush
Gold Member
MHB
- 3,269
- 5
Find the general solution of the given differential equation
$\displaystyle y^\prime - 2y = t^2 e^{2t}$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -2 \, dx =e^{-2t}$
Multiply thru with $e^{-2t}$
$e^{-2t}y^\prime
+ 2e^{-2t}y
= t^2 $
Simplify:
$(e^{-2t}y)'= t^2$
Integrate:
$\displaystyle e^{-2t}y=\int t^2\, dt=-\frac{t^3}{3}+c_1$
Divide thru by $e^{-2t}$
$\displaystyle -\frac{t^3e^{2t}}{3}+c_1e^{2t}$
ok took me 2 hours hope it ok
any suggest?
$$\tiny\textbf{Text: Elementary Differential Equations and Boundary Value Problems}$$
$\displaystyle y^\prime - 2y = t^2 e^{2t}$
Obtain $u(t)$
$\displaystyle u(t)=\exp\int -2 \, dx =e^{-2t}$
Multiply thru with $e^{-2t}$
$e^{-2t}y^\prime
+ 2e^{-2t}y
= t^2 $
Simplify:
$(e^{-2t}y)'= t^2$
Integrate:
$\displaystyle e^{-2t}y=\int t^2\, dt=-\frac{t^3}{3}+c_1$
Divide thru by $e^{-2t}$
$\displaystyle -\frac{t^3e^{2t}}{3}+c_1e^{2t}$
ok took me 2 hours hope it ok
any suggest?
$$\tiny\textbf{Text: Elementary Differential Equations and Boundary Value Problems}$$