MHB 2.1.2 Find the general solution of the given differential equation

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Find the general solution of the given differential equation
$\displaystyle y^\prime - 2y = t^2 e^{2t}$

Obtain $u(t)$
$\displaystyle u(t)=\exp\int -2 \, dx =e^{-2t}$
Multiply thru with $e^{-2t}$

$e^{-2t}y^\prime
+ 2e^{-2t}y
= t^2 $

Simplify:
$(e^{-2t}y)'= t^2$

Integrate:
$\displaystyle e^{-2t}y=\int t^2\, dt=-\frac{t^3}{3}+c_1$
Divide thru by $e^{-2t}$

$\displaystyle -\frac{t^3e^{2t}}{3}+c_1e^{2t}$

ok took me 2 hours hope it ok:cool:
any suggest?

$$\tiny\textbf{Text: Elementary Differential Equations and Boundary Value Problems}$$
 
Physics news on Phys.org
karush said:
Find the general solution of the given differential equation
$\displaystyle y^\prime - 2y = t^2 e^{2t}$

Obtain $u(t)$
$\displaystyle u(t)=\exp\int -2 \, dx =e^{-2t}$
Multiply thru with $e^{-2t}$

$e^{-2t}y^\prime
+ 2e^{-2t}y
= t^2 $

Simplify:
$(e^{-2t}y)'= t^2$

Integrate:
$\displaystyle e^{-2t}y=\int t^2\, dt=-\frac{t^3}{3}+c_1$
Divide thru by $e^{-2t}$

$\displaystyle -\frac{t^3e^{2t}}{3}+c_1e^{2t}$

ok took me 2 hours hope it ok:cool:
any suggest?

$$\tiny\textbf{Text: Elementary Differential Equations and Boundary Value Problems}$$

Did you check your result? Seems as though the integral didn't quite happen correctly.
 
tkhunny said:
Did you check your result? Seems as though the integral didn't quite happen correctly.

$$\displaystyle e^{-2t}y=\int t^2\, dt=\frac{t^3}{3}+c_1$$

you must mean the negative sign?
which I took out
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Replies
3
Views
2K
Replies
7
Views
4K
Replies
5
Views
3K
Replies
3
Views
3K
Replies
5
Views
2K
Replies
9
Views
5K
Replies
4
Views
2K
Back
Top